o o iinghiiall jla
. DAR ALMANDUMAH

Aipadl Shag Loa Ll o cig B2 sy 10

Simplified O-O Re-Design Approach: Deriving Object Oriented 1Ulgasll
Design from Traditional Procedural Design

200 (0 i o2 Aol S3gaill o)| algoll

Al Khanjari, Zuhoor Abdullah Salim(Advisor) t o> Hadlio

2014 1.S>Maodl du, L

s o 1990

1-95 1olxaall

972147 :MD 8,

dzol> Pilw, i Sgizall £95

English :aelll

uiow>lo alw, ragodell as)all

w8 ulblull agol> rasol=l

pelell & s s sl

Uloc raJgall

Dissertations 10logleoll aclgd

c@yadesdl aduduwdl duzpinll «Olizeo,dl puouai «Oliseo ,dl dwiid :Raolgo
Olzo,dl @wiid puowaill 8sle] cauclos> VI oSl Jd= oy
aycoog0ll

https://search.mandumah.com/Record/972147 ol

abga=o Jgs=ll gro> .dnglhioll jls 2019 ©
01 aclb gl Juozs cliSoy abgazo il Sgb> gao ol lade (pill Ogé> olsl go gigall Byl (sle sly axlio 3ol 0id
s 2y yai g (sigSIVI]l of iVl gdlgo Jio) alyws ST yue il of Jjgml of gl gioyg dnas wsvaseidl plaziwl sl
Aoghiodl ,ls of sl Bgi> Llesl o

www.maharaa.c(

https://search.mandumah.com/Record/972147

Chapter 1: Introduction

Software, as a product, delivers the computing potential embodied by computer
hardware. It is used to transform, produce, manage, acquire, modify, display, or
transmit information. Information can be as simple as a single bit or as complex as a

multimedia simulation (Pressman, 2014).

Software development or application development is the process of developing a
single application or a full functional integrated system. In its basic form, it is the
coding or implementation of the application at hand, but in a more broader
professional sense it is all that is involved between the conception of the desired
software's specifications through to the final manifestation of the software, ideally in

a planned and structured process.

As the complexity of the desired solution or system increases, the need for a well
planned and well executed process increases. The engineering aspect of the software
development addresses this issue. Software Engineering is defined as the application
of a systematic, disciplined, quantifiable approach to the development, operation and
maintenance of software; in other words it is the application of engineering techniques
and strategies to software. It is based on three layers: process, methods, and tools.
Software Engineering process is the glue that holds the technology layers together and
enables rational and timely development of computer software. Software Engineering
methods provide the technical “how to’s” for building software. Methods encompass
a broad array of tasks that include requirements analysis, design, implementation,
testing, and maintenance. Finally, Software Engineering tools provide automated or
semi-automated support for the development process and the methods used in

Software Engineering (Pressman, 2014).

Software Engineering defines an abstract representation of a process methodology,
known as the process model. Each methodology constitutes a framework used to
structure, plan, and control the process of developing a system. Waterfall and Agile
represent process models. They don't specify how to do things, but they outline the

types of activities, which are done. For example, Waterfall identifies the phases that a

1

project goes fhrough without saying what artifacts to produce or what tools to use. .
This is also the case with Agile model, which defines core values in the form of the
Agile manifesto, time-boxed iterations, and continuous response to change, but it
doesn't say how long your iterations should be or how your response to changes
should be.

On the other hand, a software process methodology is a specific way of conducting a
software project, like the Rational Unified Process and Scrum. They define exactly
what, when, and/or how various artifacts are produced. They might not be entirely
explicit with all regards. For example, Scrum doesn't identify what documents to
produce or not to produce, since its focus is on delivering value to the customer, But

they define, in some way, the actions that members of the project team must follow.

Many models and methodologies of Software Engineering have been theorized. Early
cxamples of the software development methodologies were the Waterfall model,
Spiral, and Prototyping models. It is worth noting that these models have emerged out
of need to control the development and carry it in a systematic manner. Some of them
have emerged to help overcome the challenges that earlier models couldn't; such as,

rapid delivery, or excess documentation overhead.

It is important to stress on a pivotal point. There is no such this as the "one for all”
solution when it comes to software development. Each model can be refined and
customized to meet the needs and standards of the development team. In some cases,
a model can be a hybrid model of many, or a tailored cut of one model, It just needs to
meet the standards of the management and the requirements of the client in order for it

to work.

1.1 A General Overview for Software Engineering

According to Pressman in his book in 2014, Software Engineering moved into its
fourth decade in the 90s. Also, throughout the industry, “software engineer” has
replaced “programmer” as the job title of preference. Software process models,
Software Engineering methods, and software tools have been adopted successfully

across a broad spectrum of industry applications (Pressman, 2014). The history of

Software Engineering begins from a traditional procedural approach that is the first
methodology in the software world. Then object-oriented and component based

approaches came into this world and brought many new useful features.

Traditional methods for the analysis and design of computer-based systems have now
been promoted for more than 40 years. Many of the organizations, which deal with
the design and construction of computer-based systems apply traditional system
development methods with varying degrees of success and there are still a great many
system developers who do not use traditional methods at all, though some of these
have attempted to introduce methods into their work practices. Where some
organizations may have found increased benefits from the adoption of such methods,
others have met only with dismay and failure (Kautz, 1999). Traditional methods
relied on defining the system as two separate entities: Data and Function entities.
These two entities would go on being traditional, planned, and controlled separately
during the process of development. This would result in a solution that might access
duplicates of data in different functions in a function oriented design, or a data that

use duplicate functions in a data oriented design.

This dispersion of data and function in traditional design created the need for a new
paradigm in Software Engineering resembling the new —back then- Object Oriented
paradigm in implementation languages. This paradigm compresses the data and
function in a single entity called objects. It defines the behavior of these objects

internally, and in relation to other objects or users in the developed system.

1.2 The Aim of the Project

The main aim of this research is to focus on identifying the steps in shifting from a
traditional procedural design to an Object Oriented (O-O) design. The steps are not
meant only for Software Engineering professionals, but also for programmers with
little Software Engineering principles knowledge. The goal is not to fully redesign the

system, but to at least have the minimum requirements, which are the objects.

Also, this project aims to apply the proposed approach on a Social Network Analysis

system in an Omani organization referred to as "Markaz". This could be achieved by

concerned with redesigning the application. The thesis at first provides background for
0-O software engineering first and then it explains the implementation, The proposed
detailed steps will serve into identifying the objects needed for redesigning the system
into the O-O paradigm. The future work would take that a step forward to derive more
of the current system in regards of diagrams and other needed documentation instead

of creating it from scratch.

As a case study, only one module of Markaz's SNA tool will be redesigned using the
O-O detailed steps. Since Markaz environment is a private and closed one, this
research skips searching for ready-made objects. Therefore, each required object is
developed by using NET frame work 4.0 In addition; GUITs (Graphical User
Interface) of each various system are developed using this approach and the MS
Visual Studio 2010 IDE and MS Expressions Blend. Meanwhile, although hardware
and software architectures of Markaz are described in the case study chapters such as
Chapter 4 and 5, specific vendors, providing technology for Markaz, software codes

and database schemas are not mentioned for security reasons.

The phases in the research methodology are shown in Table 1.1

Phase.

Proposal

Table 1.1 Research Methodology phases

NA

Duration

17-20 July 2012

Litcrature Review

1.8earch for literature
related to Procedural
Design

2.Search for literature
related to O-O desing

21 July 201221
November 2012

Literature Anzlysis

N/A

1 December 2012 -1
March 2013

Problem Definition

1.Define problem scope.

2 March 2013 — 1 May

2.Define problem parts. 2013
Develop Solution 1.Define Solution 5May 2013 -1
parameters. September 2013
2.Develop solution idea
and approach
Case Study 1.Apply solution on case 15 September 2013 —
study 5January 2014

2.Evaluate Findings

‘Write up and validation N/A 10 January 2014 —15 May

2014

1.5 Organization of the Thesis

Chapter 2 explains Software Engineering approaches in general. Chapter 2 also
describes the various approaches and process models for all these approaches are
described. Chapter 3 describes O-O development and its basic concepts, tools,
modeling languages, technologies, and promises. Chapter 4 describes the current
structure of Markaz SNA System in terms of both hardware and software
architectures. Chapter 5 describes each step of implementation of the personal module
in Markaz's SNA system. Chapter 6 is reserved for Conclusions and Suggestions in
which has some suggestions for future of Markaz's SNA system and some inferences

about Object Oriented software engineering studies.

http://www.tcpdf.org

o o iinghiiall jla

& DARALMANDUMAH

Aipadl Shag Loa Ll o cig B2 sy 10

Simplified O-O Re-Design Approach: Deriving Object Oriented 1Ulgusll
Design from Traditional Procedural Design

200 (0 i o2 Aol S3gaill o)| algoll

Al Khanjari, Zuhoor Abdullah Salim(Advisor) ton>] Hailio

2014 1S3>l du, Ul

s o 1990

1-95 1olxaall

972147 :MD 8,

dGzol> Plw, i Sgizall £95

English :aelll

uiow>lo alw, ragodell as)all

w8 ulblull agol> rasol=l

polell ads s sl

Uloc raJgall

Dissertations 10logleoll aclgd

c@yadesdl el duzpinll «Olizeo,dl puouai «Oliseo,dl dwiid :Raolgo
Olzo,dl @wiid puowaill 8sle] cauclos> VI oSl Jd= oy
dycoog0ll

https://search.mandumah.com/Record/972147 ol

abga=o Jgs=ll o> .dnglhioll jls 2019 ©

ois aclb 9| Joox eliSoy Q.]os.o.zo sidl Bg8> gao> u| ode dg.o.> ulz..a| &0 &390l BVl e by aslio 5loll 0ia
s 093 (oS 3yl ol oVl gdlgo Jio) alaug ST e sl ol Jig=dl ol gl gios chsd sasaial] plaiwM ssloll
Cl.og]a...oﬂ)|> 3|).....uJ| Ygé> ulz.o| [SY) ;sda>

www.manaraa.

https://search.mandumah.com/Record/972147

Chapter 2: Software Engineering Approaches

This Chapter describes in detail three major approaches in Software Engineering such
as traditional, component-based, and object-oriented approaches. It describes these

approaches in details and some of the process models used for development.

2.1 Various Approaches for Software Engineering
2.1.1 Traditional Approach

This approach contains basic steps of a software development process such as
analysis, design, implementation, testing, and maintenance. This thesis focuses on
only analysis and design phases and their detailed steps. Each of the steps of the
analysis phase (Pressman, 2014) provides information that is required to create a
design architecture. The flow of information during software design is illustrated in
Figure 2.1. For specifying software, this approach offers some variety of elements
such as a data dictionary, data flow diagrams, state transition diagrams, entity-
relationship diagrams, process specifications, control specifications, and data object
descriptions for analysis phase. The design phase produces a data design, an
architectural design, an interface design, and a procedural design with the help of
various methods and techniques such as transaction mapping and transform mapping
for architectural design and structured programming, graphical design notation,

tabular design notation, and program design language for procedural design. Brief

descriptions of some favorite elements of analysis and design models are mentioned
below (Brooks, 1987):

Architectural

design \

Data design

AN

The analysis model The design model

Figure 2.1 Mapping between design steps and related techniques

7

Data flow diagrams represent the transformations of data as it flows through a system
and are the focus of SA/SD (Structured Analysis/ Structured Design). A data flow
diagram consists of processes, data flows, actors, and data stores. Starting from the
top-level data flow diagram, SA/SD recursively divides complex processes into sub
diagrams, until many small processes are left that are easy to implement. When the
resulting processes are simple enough, the decomposition stops, and a process
specification is written for each lowest-level process. Process specifications may be

expressed with decision tables, pseudo code, or other techniques.

The data dictionary contains details that cannot be included from data flow diagrams.
The data dictionary defines data flows and data stores and meaning of various names.
State transition diagrams illustrate time dependent behavior. Most state transition
diagrams describe control processes or timing of function execution and data access

triggered by events.

Entity-relationship (ER) diagrams highlight relationships between data stores that
otherwise would only be seen in the process specifications. Each ER data element
corresponds to one data flow diagram data store. In design phase, the most favorite
technique is structured programming to produce procedural design. It is performed by
languages such as Pascal, Ada and C. The broad definition of structured programming
refers to any software development technique that includes structured design and
results in the development of a structured program. Structured programming allows
programs to be broken down into blocks or procedures, which can be written without
detailed knowledge of the inner workings of other blocks. Thus allowing a top-down
design approach or stepwise refinement (Brooks, 1987). Large-scale systems, built
using this approach, are often deployed on only mainframes and minis. They feature
as mainframe-based or other non-relational database systems. Therefore, both feeling
the heat of competition, and simply looking for ways to improve software
development can be the reason for moving into object-oriented approach in industry
(Kautz, 1999).

2,1.2 Component-Based Approach

This approach is expected to revolutionize the development and maintenance of
software systems. The Gartner Group, for example, estimates that "... by 2003, 70%
of new applications will be deployed as a combination of pre-assembled and newly
created components integrated to form complex business systems." The resulting
increase in reuse should dramaticaily improve time-to-market, software lifecycle
costs, and quality (Atkinson et al., 2005). In this section the emphasis is how this
approach and its seed, CBD, are taken from previous approaches and intermediary
approaches such as distributed objects and distributed systems. Figure 2.2 depicts the
transformation that occurs after object-oriented approach. With distributed object
approach extends the object-oriented approach with the ability to call objects across
address space boundaries, typically using an “object request broker” capability. The
distributed system approach is a development approach for building systems that are

distributed, and are often represented as multi-tier.

Distributed Component

Distributed Systems

Distributed Objects

‘ Object-oriented '

Traditional development

CBD Maturity

Figure 2.2 CBD maturity phases

Many companies today claim to be following component-based development when
what they are really following is distributed system development, or using some kind
of distributed object technology. While this can deliver significant benefits, such as
allowing the technical bridging of heterogenecous systems, it does not decrease the
cost of development. It is slightly addressed by using object-oriented techniques but
not enough to make a big difference. At this point, distributed component approach is
embraced in industry to reap the desired benefits, often looked for by a software
development organization. This uses current build-time and run-time technologies
such as Enterprise Java Beans that is attempted to reduce cost and development time
for distributed systems. It becomes apparent that what is needed is something that
addresses both the challenge of distributed systems interoperability and the challenge
of how to build individual systems that can be treated as atomic units and can easily

be made to cooperate with each other (Kautz, 1999).

Despite the industrial evolution, mentioned above, component-based technology
introduces abstraction and lower-level mechanisms but has to be orchestrated into a

comprehensive Software Engineering process (Dorgu and Tanik, 2003).

2.1.3 Object-Oriented Approach

The steps of software development mentioned above are common for all Software
Engineering approaches. Therefore, analysis and design phases are inevitable for
object-oriented approach, as well. In this approach, design is divided into four

different steps as illustrated in Table 2.1,

10

Table 2.1 Analysis and design phases for Object-Oriented Approach

Phase Techniques Key Deliverables
Analysis e Collaboration Diagrams Analysis Models
e Class and Object models
: ® Analysis Modeling
System Design ¢ Deployment Modeling Overview design and
s Component Modeling Implementation
s Package Modeling architecture
e Architectural Modeling
Class Design » Class and Object Modeling Design Models
» Interaction Modeling
e State Modeling
¢ Design Patterns

Object-oriented approach promises a way for implementing real-world problems to
abstractions from which software can be developed effectively. It is a sensible
strategy to transform the development of a large, complex super-system into the
development of a set of less complicated sub-systems. Object-orientation offcrs
conceptual structures that support this sub-division. Object-orientation also aims to
provide a mechanism to support the reuse of program code, design, and analysis
models (Hill and McRobb, 2002).

This approach uses classes and objects as the main constructs from analysis to
implementation. It normally involves using an Object-Oriented language such as C++
or Java that provides (build-time) encapsulation, inheritance and polymorphism, and
the ability for objects to invoke each other within the same address space. This last

point i$ an important constraint when it comes to distributed systems.

UML (Unified Modeling Language) contains a number of concepts that are used to
describe systems and the ways in which the systems can be broken down and
modeled. The UML Specification defines the terms class and object as follows (Hill
and McRobb, 2002):

® A class is a description of a set of objects that share the same attributes,

operations, methods, relationships and semantics. Moreover, the purpose of a

11

class is to declare a collection of methods, operations and attributes that fully
describe the structure and behavior of objects.

* An object is "an instance that originates from a class. It is structured and
behaves according to its class.’ Interface is another important construct
defined as a group of externally visible operations. The interface contains no
internal structure; it has no attributes, no associations, and only abstract

operations.”

In object-orientation, three main principles are important. Encapsulation, which is also
known as information hiding, provides the internal implementation of the object
without requiring any change to the application that uses it. The ability of one class of
objects to inherit some of its properties or methods from an ancestor class is named
inheritance in object technology. Polymorphism is producing various results for a

generalized request based on the object that is sent to.
In Object-Oriented Approach objects of software can be (Brooks, 1987):

o Exiernal entities: printer, user, sensor
o Things: reports, displays

* Occurrences or events: alarm, interrupt
* Roles: manager, engineer, salesperson
¢ Organizational unit: team, division

e Places: manufacturing floor

s Structures: employee record

In this approach de facto standard notation (Hill and McRobb, 2002), UML, reveals

analysis and design phases of software development,

Use cases specify the functionality that the system will offer from the users’
perspective. They are used to document the scope of the system and the developer’s

understanding of what it is that the users require.

Classes might interact to deliver the functionality of the use case and the set of classes

is known as collaboration. Collaborations can also be represented in various ways that

12

reveal their internal details. The collaboration diagram is probably the most useful
one. In addition to collaboration diagram, class diagram also represents these
collaborations in detail. The class diagram is fundamental to object-oriented analysis.
Through successive iterations, it provides both a high-level basis for systems
architecture; and a low-level basis for the allocation of data and behavior to individual

classes object instances.

A sequence diagram shows an interaction between objects arranged in a time
sequence. Sequence diagrams can be drawn at different levels of detail and to meet

different purposes at several stages in the development life cycle.

In Object-Orientation, some algorithmic approaches are used, that is, Structured

English, Pseudo-code, and Activity diagrams.

The UML specification defines the state as a condition during the life of an object or
an interaction during which it satisfies some condition, performs some actions, or

waits for some events. State charts describe that apparently.

Class Responsibility Collaboration (CRC) cards provide an effective technique for
exploring the possible ways of allocating responsibilities to classes and the
collaborations that are necessary to fulfill the responsibilities. CRC cards can be used

at several different stages of a project different purpose.

The Object-Oriented Approach allows development-time reuse (Kautz, 1999),
meaning that compared to previous approaches, it enhances developers’ ability to
build software that reuses pieces designed and coded by other developers. However,
this level of reuse has clearly fallen short of addressing the needs of large-scale

development.

The Object-Oriented Approach has facilitated development of large-scale projects, but
it has been mainly limited to the use of one technology on one platform. It has not
really developed technologies and models for interoperability, but rather has been
mostly focused on the development of one single system. In the 80s, neither

interoperability nor portability was a major issue. The need for open systems was

13

already there, but the technology to resolve the issues was not. This made it difficult

to address portability and interoperability (Kautz, 1999),

Developer's point of view User's paint of view

TEREINRRAIIRD

-
.
.
an

al
-
-
-t

Program 1} ...f

L Program 2

e P

| 'F'rogram:i f

Monclithic application

Traditional System
Figure 2.3 Object-Oriented Application

Besides the insufficiencies of two features of object-oriented, reusability and
interoperability, their payloads are described above. The reason for these
shortcomings can be explained as the Object-Oriented Approach changed the way,
applications were built, but it did not change the nature of the applications themselves.
This is illustrated in Figure 2.3. In structured approach, the end user would receive a
monolithic application. When it is developed using Object-Oriented Approach, the
end user would still receive a monolithic application. Shortly, the object-oriented

approach is at the service of the functional developer, not the end user (Kautz, 1999).

2.2 Process Models

A software system, either small or large scale, is an uncertain concept at the beginning
and therefore needs to be analyzed, designed and implemented. This completes the
development but it is not over in terms of operation of software. Maintenance is

required after all steps to keep software alive. All of these steps are called software
14

proces$ model. There are various process models called life cycle (Schach, 1999),
which are developed for different circumstances. Traditional process models are the
most mature ones, and mostly suit structured approach, However, they are also used
for recent approaches such as Object-Oriented and component-based approaches in
various phases and in somehow modified form. Object-Oriented Approach does not
offer any original process model, which provides for its needs completely. Therefore,
this approach complies with traditional models and their appropriate combinations.
However, it is different when it comes to Component-Based Approach because it

changes the nature of software (Kautz, 1999).

2.2.1 Traditional Process Models

Since each product shows different characteristics at development stage, various
project life cycles can be applied to computerize systems development. Some of them
will spend years in the logical phase, current hardware may just not be fast 14 enough
for the product, or current users may not be capable of this new system and
computerized background. Some of them can also be quickly designed and
implemented and then many years are spent for modifications to meet the users’
changing needs in the maintenance phase. Table 2.2 shows the most used phases in
process models and their deliverables. These output deliverables are useful and

required for their next steps as their inputs.

15

Table 2.2 Life cycle deliverables

Phase Output deliverables

Requirements Analysis Requirements specification
Functional specification

Acceptance test specification

Design Software Architecture specification
System test specification

Design specification

Sub-system test specification

Unit test specification

Construction Program code

Testing Unit test report
Sub-system test report
System test report
Acceptance test report

Completed system

Installation Installed system

Maintenance System changes

Change Report

A number of different life-cycle models will be described and three of them are most
widely used; Waterfall with iteration, Rapid Prototyping and the Spiral Model which

has received considerable attention recently.

16

2211 Waterfall Model

Until the early 1980s, the Waterfall model was the only widely accepted life-cycle
model. This approach offers a sequential mechanism among the steps of development
process. It seems difficult to return to an earlier phase once it is completed like a real

Waterfall (see in Figure 2.4).

System
Engineering

Requirements
Analysis

h

Design

Canstruction

Testing —l

Installation

Maintenance

Figure 2.4 Waterfall Process Model

In the real world, there can be no high quality software that has been developed with
this process model. Because when one of the phases of these process fails, that
software is inevitable regarding the error prone in order not to go back with feedback.

For that reason iteration is inevitable.

The Waterfall tends to be irresponsive to changes in client requirements or technology
during the project. Once they have been made, architectural decisions are difficult to

change.

17

In contrast to Waterfall, the diagram in Figure 2.5 shows poésible_paths for iteration
within the Waterfall but these iterations can be very costly. Iterative Waterfall has the
following advantages (Hill and McRobb, 2002):

¢ The tasks in a particular stage may be assigned to specialized teams. For
example, some teams may specialize in analysis, others in design and yet‘
others in testing.

s The progress of the project can be evaluated at the end of each phase and an
assessment is made as to whether the project should proceed or not.

¢ The controlled approach can be effective for managing the risks on large

projects with potentially high levels of risk.

System
Engineering l
F'
Requirements
Analysis
Fy y
Design
& .
Construction

* y

Testing —l

Installation

v

Maintenance

4"*7 4*4 4——4——‘

Figure 2.5 Waterfall with Post Installation check Process Model (Pressman, 2014)

Some authors (Schach, 1999) consider that testing is not a separate phase to be
performed only after the product has been constructed; it is to be performed at the end

of each phase.
18

2.2.1.2 Build-and-Fix Model

This approach may work well on short programming exercises of 100 and 200 lines

long. In this approach the product is constructed without specifications or any attempt

at design. The developers simply build a product that will be tested as many times as

necessary to satisfy the client. Therefore, the build-and-fix model is very

unsatisfactory for products of any reasonable size.

2.2.1.3 Rapid Prototyping Model

Since users operate the system and perform fixed processes, they cannot imagine the

whole system most of the time and they need to be conveyed into a working system.

Therefore, it is a problem not to entirely define the requirements in terms of

development processing.

Initial Analysis

Prototyping
Completed

~ Define
Objectives

b
Specify
Requirments

Evaluate
Prototype

Figure 2.6 Rapid Prototyping Model (Pressman, 2014)

Gonstruct
Profotype

As well as being used to investigate the requirements, prototyping might also be used

to discover the most suitable form of user interfaces. Some advantages and

disadvantages are described below (Hill and McRobb, 2002):

e Early demonstrations of system functionality help

misunderstandings between developer and client;

» Client requirements that have been missed are identified;

19

identify any

¢ Difficulties in the user interface can be identified;
* The feasibility and usefulness of the system can be tested, even though, by its

very nature, the prototype is incomplete.

Disadvantages:

The client may perceive the prototype as part of the final system, or may not
understand the effort that will be required to produce a working production
system, and also may expect delivery soon;

* The prototype may divert attention from functional to solely interface issues;

¢ Prototyping requires significant user involvement;

¢ Managing the prototyping life cycle requires careful decision-making.

A solution (Schach, 1999) is offered that combining the two approaches, Waterfall
and Prototyping. Rapid Prototyping can be used as a requirement analysis technique.
In other words, the first step is to build a Rapid Prototype in order to determine the
client’s real needs and then to use that Rapid Prototype as the input to the Waterfall
Model.

This approach also has a useful side effect (Schach, 1999). Some organizations are
reluctant to use the Rapid Prototyping approach because of the risks involved in using
any new technology. Introducing Rapid Prototyping into the organization as a front
end to the Waterfall Model will give management opportunity to assess the technique

while minimizing the associated risk.

2.2.1.4 Incremental Model

Models, described above, all produce a complete product, which satisfies the clients.
If those models are used correctly, they result in such products that will have been
entirely tested and the clients should be so confident that these products could be used

for the purposes, which they wish.

In the incremental model, operational products are delivered at each stage. Software is
not written, it is built (Schach, 1999). The complete product is divided into parts, and
the developer delivers the product part by part. A typical product consists of 10 to 50

20

builds. At each stage, the client has an operational quality product that does a portion
of what is required; from delivery of the first build, the client is able to do useful
work. With the incremental model, portions of the total product might be available
within weeks, whereas the client generally waits months or years to receive a product
built using the Waterfall or Rapid Prototyping models. Another advantage of the
Incremental Model is that it reduces the traumatic effect of imposing a completely
new product on the client organization. From the client’s financial viewpoint, phased
delivery does not require a large capital. Figure 2.7 shows each phase of Incremental
Process Model (Schach, 1999).

Requiremeaents
phase
Verify

Specification
design
Werify

Architectural
design
Verify

For each bulild:
Performn detailed
design, imple-
mentation, and
integration. Test.
Dealiver to client.

: Operations Mode
—» Develapment

— — — Maintenance l

Retirement

Figure 2.7 Incremental Model (Pressman, 2014)

21

A difficulty with the incremental model is that each additional build somehow has to

be incorporated into the existing structure without destroying what has been built up

to that date.

2.2.1.5 Spiral Model

Although the models, described above, involve reducing the impact of risk, they do
not base their concepts on that risk factor. The idea of minimizing risk via the use of
prototypes and other means is the concept underlying the Spiral Model. A simple way
of looking at this life cycle model is a Waterfall Model with each phase preceded by
risk analysis. Before commencing each phase an attempt is made to control (or
resolve) the risks as shown in Figure 2.8. If it is impossible to resolve all the

significant risks at that stage, then the project is immediately terminated.

Cumulative

/‘I‘\?USI
Evaluate alternatives,

|
: Progre identify, resolve risks

Determine
objectives,
alternatives,
constrain

Operational
prototype

|, benciimarks

Software
requirements

Detailed
design

—— e — ——

Software
product

equirements
validation

Design validation

Plan

next i and verification

phase : I Accept : ation
! Implementation ;| ance 1 test
|I tost |
|

Figure 2.8 Spiral Model

22

The strength of this model comes from the emphasis on alternatives and constraints,
supporting the reuse of existing software and the incorporation of software quality as
a specific objective. In addition, 2 common problem in software development is to
determine when the products of a specific phase have been adequately tested (Schach,
1999).

Sometimes it is not suitable to implement this model because this model is only used
for large-scale projects. It makes sense when performing risk analysis in terms of cost

of time and finance.

2.2.2 Component Based Models

As mentioned before Object-Oriented process models are not widely used since there
is no change in nature of software for that approach. However, it is different for
Component-Based Software Engineering Approach because it changes the nature of
software, so there is a need for some original phases stem from the architecture of

components.

One more definition must be added at this point to differentiate software development
and the component life cycle. In a traditional software development, process model
developers are often analysts, designers, and developers. A project has a well-defined
Beginning when requirements are elicited; and a well-defined ending when the final
software system is delivered. However, component production is different.
Considerably more time is devoted to business rules, business process modeling,
analysis, and design. Much less time is spent in development, while testing occurs
throughout the process. Following definition explains this software process type in
general (Kroll and Kruchten, 2003):

The Component-Based Software Life Cycle (CSLC) is the life cycle process for a
software component with an emphasis on business rules, business process modeling,
design, construction, continuous testing, deployment, evolution, and subsequent reuse
and maintenance.In general, analysis and design phases for Component-Based Process

Models take more time than traditional ones take.

23

The questions of how to identify model and specify components, how to follow a
Component-Based development process in a systematic and consistent manner, and
how to assembly formally specified components into the Component-Based system
architecture are not properly addressed yet. Though there are some studies in this era,
in this study, only two of them are selected, one of them being from Stojanovic (Taft,
2002) and another one, which has been worked on in more detail, is from Ali H.
Dogru and Murat M. (Dogru and Tanik, 2003).

2.2.2.1 Stojanovic Process Model

A Component-Oriented development Process Model, has been introduced by
Stojanovic (Taft, 2002), focusing on the component concept from business
requirements to implementation. This process will be called by its owner’s name in
this study. The phases of requirements, analysis, design and implementation in a
traditional development process has been substituted by service requirements,
component identification, component specification, component assembly and
deployment. After the components of the system are fully specified, a decision can be
made 1o build components, wrap existing assets, buy COTS (Commercial Off-the-

Shelf) components or invoke web services over the Internet.

2.2.2.2 COSE Process Model

Dogru and Tanik emphasize that Component-Based Methodology is immature:
“Software development methodologies began with traditional approaches that
followed the waterfall process model. They then moved toward object-oriented
abstractions, which were finally supported by object-oriented methodologies. Now,
component-based technology introduces abstraction and lower-level mechanisms but

has to be orchestrated into a comprehensive software engineering process.” (Dogru
and Tanik, 2003)

24

m
B
gl A

Component
Software system Decompasition speclf?cation Integration Software system
specification search.
modification,
crgation -

Figure 2.9 COSE Process Model (Dogru and Tanik, 2003)

Figure 2.9 illustrates steps of COSE Process Model in general. However, it is
explained in more detail with a study of Vedat Bayar, which is summarized here to
reveal COSE Process Model and its details; COSE Process Model building activity
starts top-down to introduce the building blocks of the system. As the activity
continues towards lower granularity blocks, interfaces between the blocks are also
defined. At an arrived level where the module is expected to correspond to a
component, a temporary bottom-up approach can be taken; if desired capability can
only be achieved by a set of components, their integration into a super-component

should be carried out.
COSE process model consists of four main phases and a system test phase:

e System specification
e System decomposition
e Component Specification, search, modification, creation

» Integration

COSE Process Model starts with system specification. Problem is specified and
understood, then system high-level requirements are stated and a preliminary search
for existing components is conducted in system specification phase. Problem and

problem domain knowledge are input to this phase. System high level functional and

25

non-functional requirements and domain related existing component specification

documents are the output of this phase.

System is analyzed and decomposed in the system decomposition phase. Functional

requirements are detailed and required components and their specifications are stated.

Components that are going to be implemented in the system are specified and
developed in component specification phase, either by using existing components or

developing new components.

System decomposition and component specification phases are not independent
phases. When the system decomposition comes to a stable level, component
specification phase can begin. Component specification begins with searching for
existing components and continues with the evaluation of located components. If the
decomposition level is not low enough to find and evaluate needed components, then
system is decomposed further until there is no further meaningful decomposition. The
outcome of system decomposition and component specification phases is components
and component specifications. The flow of the COSE Process Model continues with

integration of the components and testing of the whole system.

2.2.3 Object Oriented Process Models
2.2.3.1 Fountain Model

The Fountain model outlines the general characteristics of the systems level
perception of an object oriented development. There is a high degree of merging in
the analysis, design, implementation, and unit testing phases. Moving through a
number of steps, falling back one or more steps and performing repeatedly, is a far
more flexible approach than the one proposed by Waterfall Model. It follows a bottom
up approach, which starts from the solution. If there is an existing solution, that
solution is studied first and the necessary details are identified and organized in a
suitable manner. For a problem not having a solution, the domain experts (i.e., experts
who are capable of providing useful information and future requirements) are
consulted with the conventional solution to start with. Since the software is developed
by analyzing the solution first, this approach is known as bottom-up approach (Buyya,
2009).

26

//;’)::_ B - . . |/E;;h\};‘or:\

i
{
Fa

v]

]
S
&

3

P

—

\ |
J

[Ng/ Y\)
& ‘

X
Al:nriy:sis 9
Figure 2.10 Fountain Model

/D

The Fountain Model provided better solutions for complex problems compared to the
top-down approach followed in the Waterfall Model. The procedural and structured
programming languages were found unsuitable for the bottom-up approach because a
change in requirement, analysis, or design phase can cause the programming to start
from the beginning once again. They lack flexibility, modifiability, and software

component reuse.

2232 Unified Software Development Process

The Unified Process (UP) is a use-case-driven, architecture-centric, iterative and
incremental development process framework that leverages the Object Management
Group's (OMG) UML and is compliant with the OMG's SPEM. The UP is broadly
applicable to different types of software systems, including small-scale and large-
scale projects having various degrees of managerial and technical complexity, across

different application domains and organizational cultures. (Kroll and Kruchten, 2003)

The unified process divides the project into four phases: Inception, Elaboration,

Construction, and Transition.

." P

Lifecycle Lifecycle initia
objectives architecture operational
miilestone miilestone capability

Figure 2.11 Unified Process phases (Kroll and Kruchten, 2003)
27

Inception is the smallest phase in the project, and ideally it should be quite short. If
the Inception Phase is long then it may be an indication of excessive up-front
specification, which is contrary to the spirit of the Unified Process. (Kroll and
Kruchten, 2003)

In the Elaboration phase the project team is expected to capture a healthy majority of
the system requirements. However, the primary goals of Elaboration are to address
known risk factors and to establish and validate the system architecture. Common
processes undertaken in this phase include the creation of use case diagrams,
conceptual diagrams (class diagrams with only basic notation) and package diagrams
(architectural diagrams). (Kroll and Kruchten, 2003)

Construction is the largest phase in the project. In this phase the remainder of the
system is built on the foundation laid in Elaboration. System features are implemented
in a series of short, time boxed iterations. Each iteration results in an executable
release of the software. It is customary to write full text use cases during the
construction phase and each one becomes the start of a new iteration. (Kroll and
Kruchten, 2003)

The final project phase is Transition. In this phase the system is deployed to the target
users. Feedback received from an initial release (or initial releases) may result in
further refinements to be incorporated over the course of several Transition phase
iterations. The Transition phase also includes system conversions and user training
(Kroll and Kruchten, 2003).

2.2.3.3 Rational Unified Process

The Rational Unified Process (RUP) is an iterative software development process
framework created by the Rational Software Corporation, a division of IBM since
2003. (Taft, 2002) it is based on the Unified Process. (Kroll and Kruchten, 2003)

28

In each iteration in RUP, the tasks are categorized into nine disciplines. First, there are
six engineering disciplines: Business Modeling, requirements, analysis and design,
implementation, test, and deploy. Then, there are three supporting disciplines:

configuration and Change management, project Management, and environment.
(Kroll and Kruchten, 2003).

Requirements Analysis & Design

Business Modelling Implementation

Config & Change
Management

Project Management

Envircnment

Initial Planning§ Evaluation)

Figure 2.12 Rational Unified Process (Kroll and Kruchten, 2003)

Planning

p Deployment

29

http://www.tcpdf.org

o o iinghiiall jla

& DARALMANDUMAH

Aipadl Shag Loa Ll o cig B2 sy 10

Simplified O-O Re-Design Approach: Deriving Object Oriented 1Ulgasll
Design from Traditional Procedural Design

200 (0 w2 Aol Ssgaidl o)| algoll

Al Khanjari, Zuhoor Abdullah Salim(Advisor) ton>] Hailio

2014 1.S>Maodl du, U

b o 1990

1-95 1olxaall

972147 :MD 8,

&ol> Jilw, i Sgizeall £95

English :aelll

iow>lo allw, ragodell as)all

a8 ulblull deol> rasol=l

rolell ads radsdl

Uloc raJgall

Dissertations 10logleoll aclgd

@y el adududl auzpinl] cOlizo | puouai «Oliseo | dwiid :Raolgo
Ol | @waid puswaill 8sle] (auclosz VIl OlSudl Jd= aso
aucoog0ll

https://search.mandumah.com/Record/972147 ol

abga=o Jgs=ll o> .dnglhioll jls 2019 ©
oia aclb 3| Sz eliSoy Cdog.o.zo idl Bg8> guo> u| ode ol dg.o.> ulz.a| &0 &9g0Jl SVl e by aslio dsloll 0ia
Ui U9> (wg,;SJ\” .b);” 5| _u).u\” 8.9|9n J.ua) G.L_wg CS| e)_oul 9| Jng..“ 9| (j_ux...“ &iou9 Jnsd Mzmn“ ,o|_\z;_wXU 8slall

Cl.og]a...oﬂ)|> 3|).....uJ| Ygé> ulz.o| [SY) ;sda>

www.manaraa

https://search.mandumah.com/Record/972147

Chapter 3: Literature Review

Systems designed and implemented using the traditional procedural approach, the
focus is mainly on the functions of the system in the current problem domain. This
approach doesn’t take into consideration the impact of the context in which this
application or system will run (e.g. organization). This leads to a number of

shortcomings of such a design.

In this chapter we will review the literature which discusses these shortcomings of the
traditional procedural design approach, and how the Object Oriented approach has
worked to solve such issues. This chapter answers through the literature the questions
of:

* Where does Object Orientation have to start in a process?

* Why development teams hesitate to adopt object orientation in their development

process?

* What quality attribute of the object oriented design is the most important to

incorporate?

3.1 Issues with Traditional Procedural design

This section shows some issues with traditional procedural design which are inherited

through its nature,

1. Linear view of the system that concentrates solely on functionality: Traditional
procedural software design is concerned with capturing, realizing and testing one set
of requirements, reflecting a snapshot of one field of application. The field of
application may be a specific functionality with special requirements and interface
features (Boehm, 1979). It focuses on the local problem domain resulting in a
localized solution with a specific use and functionality. Procedural design is based on
a linear worldview of the system development process and provides only inadequate
techniques for data modeling (Floyd et al, 1986). Hence, data modeling is not the key

factor in the design. It concentrates on the use and business logic of the system.

30

According to Simmons in 1994, Procedural design products are based on analysis of a
single system only. They do not take into account the larger problem domain in which
this current problem domain exists, which leads to a linear solution to not a solution
that fits into a higher hierarchy of problem domains (Simons, 1994). Chen in 2004
gives a hint to the solution for this linear approach by concluding that Procedural
design forces the implementation to be visualized as a series of steps where the

problem is more of objects in relations with each other. (Chen, 2004)

2. Not adaptable to change: Traditional procedural design localizes the problem
domain and as a result it doesn’t take into account the changing nature of the larger
context of the problem at hand. This leads to a false assumption of requirement
stability (Boehm, 1988). In addition to such an assumption, this approach in design
doesn't provide a facility to adapt to behavioral change in business logic or
functionality (Kahler et al., 2000). This hinders the quality of the solution the
traditional procedural design offers. This could be because they are localized and they
lack scalability potential and adaptability to change (Mack, 2010). Another problem
with procedural design is defects caused by change in data representation. This can
propagate and become harder to detect in traditional procedural design since the
whole focus is on the functional aspect of the system not the relations between data

entities (objects) (Xiong, 2011).

3.2 The Object Oriented solution to these problems

The object Oriented design has solved the issues in traditional procedural design using
its own native quality attributes, like Top level approach, recusable objects, and

scalable solutions.

1. Top level view of system; hence better understanding of the context of the problem
domain: The object oriented design starts at the top down design. Therefore, it takes a
wider perspective of the problem domain which results in more general and abstract
designs. These designs have more potential in covering a larger problem domain than
its traditional procedural counterparts (Meyer, 1988). This approach of a top level

design has an impact on how data is modeled and how the data-centered approach -as

31

opposed to a procedure centered approach- gives a better understanding of the nature
of the problem (Barton, 1997).

2. Adaptability to change: The nature of object orientation which concentrates on
objects and object behaviors rather than functionality. The strict coupling with the
business logic of the system makes the system very change tolerable (Carlsen and
Haaks, 1992). It makes object design very adaptable to change (Morch, 1997).

3. Standard and coherent representation of data: Object oriented design provides
software with a unifying or coherent form or structure. It forces a standard
representation of collection of data used in objects (Perry and Wolf, 1992). OO design
uses techniques like inheritance which induces standards that are conceived through
the base classes and the hierarchy of inheritance (Craig, 1999). The nature of object
orientation and how versatile objects force a coherent standardized design through the
system at hand (Eden, 2004).

4. Reusability: One of the quality attributes achieved by object oriented design is
reusability, Reusability is evident in the reusable nature of objects, which results in
more scalability in the extension of objects using inheritance and encapsulation.
Reuse achieved by object orientation is said to dramatically increase productivity
(Basili et al, 1996). Reusability of the object oriented design makes it more
maintainable, and scalable (Lewallen, 2005). Reusability in the object oriented design

approach simplifies the development and maintenance of the program (Mack, 2010).

3.3 Where does Object Orientation have to start in a process?

According to Michael Piefel, object orientation in the development process should
start at the design level to fully take advantage of the Object Oriented Programming
Languages (OOPL) at the implementation phase, since OOPL is the de-facto
programming languages for software development. It is obvious that when the design
does not produce an object-oriented structure then the full power of an OOPL will be
wasted. It is important to identify classes at the design stage, and not take them just as

an implementation issue (Piefel, 1996).

32

Another note regarding the design phase according to Barton is to start at the level of
organization. If in this way you get people over the habit of writing code procedurally,
then some very different views on information representations come to view. The
design has to take into account the strategically important interests of the organization

the software is being developed for (Barton, 1997).

3.4 Why development teams hesitate to adopt object
orientation in their development process?

In spite of these potential benefits, many softiware development groups still hesitate to
use Object Oriented Software Engineering (OOSE). Many of these groups are fully
occupied by their current software development work and fear being overwhelmed if
they introduce a new development paradigm with new knowledge base. Besides,
development teams do not know in which phase of the development process to start

the object orientation (Fayad et al., 1996).

3.5 What quality attribute of the object oriented approach is
the most important to incorporate and when to establish
it?

The most valuable quality attribute of the object oriented approach is reusability.

Reusability of software is an important prerequisite for cost and time-optimized -

software development. It influences directly the effort, necessary to build new

applications upon existing ones (Narzt et al., 1998). But according to Al-Ahmed to
most common reuse in the object oriented is code reuse. This happens in the
implementation phase not in the design phase (Al-Ahmed, 2006). Reusability benefits
from establishing it in a higher level in the development process especially in the
design phase (Batory and Smaragdakis, 1998). Design reusability is more
advantageous over code reusability in the object oriented approach because it can be
applied in more contexts and so is more common. Also, it is applied earlier in the

development process, and so can have a larger impact on a project (Johnson, 2000).

33

3.6 Related Work

There are approaches for deriving the objects needed for an O-O design from a
procedural system. But they do not meet some of the criteria the solution set for it to

work for development teams. The following are the two main approaches:

1. Refactoring Anti-Pattern by Alexander Shvets (Shvets, 2013).
2. MetaObject Facility's (MOF) Model Driven Architecture (MDA) by the
Object Management Group (OMG, 2014).

3.6.1 Refactoring (BLOB) Anti-Pattern

This anti pattern is used to decompose what is called the "BLOB", "Singleton", or
"The God Class". In general, the BLOB is a procedural design even though it may be
represented using object notations and implemented in object-oriented languages. The
BLOB contains the majority of the processes, and the other objects contain the data.
Architectures with the BLOB have separated processes from data. In other words,

they are procedural-style rather than object-oriented architectures.

The solution involves a form of refactoring. The key is to move behavior away from
the BLOB. It may be appropriate to reallocate behavior to some of the encapsulated
data objects in a way that makes these objects more capable and the BLOB less

complex.

Although the Refactoring Anti-Pattern is a good solution for decomposing BLOBS, it
will not be suitable for the required solution need in our case. This is because of two

main reasons:

1. The actual work is done after implementation not during the design. Where
the refactoring needs to be on a higher level than implementation to use the
underlying Object Oriented Programming Languages to their full Potential.

2. The anti-pattern still localizes the solution to the problem domain. It doesn't
encompass an organizational view of the system. Hence, the result is only

reusable in similar problem domains not on a larger scale,

34

3.6.1.1 General Form

The BLOB is found in designs where one class monopolizes the processing, and other
classes primarily encapsulate data. This Anti-Pattern is characterized by a class
diagram composed of a single complex controller class surrounded by simple data
classes. The key problem here is that the majority of the responsibilities are allocated

to a single class,

In general, the BLOB is a procedural design even though it may be represented using
object notations and implemented in object-oriented languages. A procedural design
separates process from data, whereas an object-oriented design merges process and

data models, along with partitions.

The BLOB contains the majority of the process, and the other objects contain the data.
Architectures with the BLOB have separated process from data; in other words, they

are procedural-style rather than object-oriented architectures.

The BLOB can be the result of inappropriate requirements allocation. For example,
the BLOB may be a software module that is given responsibilities that overlap most

other parts of the system for system control or system management.

The BLOB is also frequently a result of iterative development where proof-of-concept
code evolves over time into a prototype, and eventually, a production system. This is
often exacerbated by the use of primarily GUI-centric programming languages, such
as Visual Basic, that allows a simple form to evolve its functionality, and therefore

purpose, during incremental development or prototyping.

The allocation of responsibilities is not repartitioned during system evolution, so that
one module becomes predominant. The BLOB is often accompanied by unnecessary
code, making it hard to differentiate between the useful functionality of the BLOB

Class and no-longer-used code.

35

3.6.1.2 Symptoms and Consequences

Single class with a large number of attributes, operations, or both. A class with
60 or more attributes and operations usually indicates the presence of the
BLOB.

A disparate collection of unrelated attributes and operations encapsulated in a
single class. An overall lack of cohesiveness of the attributes and operations is
typical of the BLOB.

A single controller class with associated simple, data-object classes.

An absence of object-oriented design. A program main loop inside the BLOB
class associated with relatively passive data objects. The single controller class
often nearly encapsulates the applications entire functionality, much like a
procedural main program.

A migrated legacy design that has not been properly refactored into an object-
oriented architecture.

The BLOB compromises the inherent advantages of an object-oriented design.
For example, The BLOB limits the ability to modify the system without
affecting the functionality of other encapsulated objects. Modifications to the
BLOB affect the extensive software within the BLOB's encapsulation.
Modifications to other objects in the system are also likely to have impact on
the BLOB's software. _ ‘

The BLOB Class is typically too complex for reuse and testing. It may be
inefficient, or introduce excessive complexity to reuse the BLOB for subsets
of its functionality.

The BL.OB Class may be expensive to load into memory, using excessive

resources, even for simple operations.

3.6.1.3 Typical Causes

Lack of an Object-Oriented Architecture. The designers may not have an
adequate understanding of object-oriented principles. Alternatively, the team
may lack appropriate abstraction skills.

Lack of (any) architecture. The absence of definition of the system
components, their interactions, and the specific use of the selected

36

programming languages. This allows programs to evolve in an ad hoc fashion
because the programming languages are used for other than their intended
purposes.

Lack of architecture enforcement. Sometimes this Anti-Pattern grows
accidentally, even after a reasonable architecture was planned. This may be the
result of inadequate architectural review as development takes place. This is
especially prevalent with development teams new to object orientation.

Too limited intervention. In iterative projects, developers tend to add little
pieces of functionality to existing working classes, rather than add new
classes, or revise the class hierarchy for more effective allocation of
responsibilities.

Specified disaster. Sometimes the BLOB results from the way requirements
are specified. If the requirements dictate a procedural solution, then
architectural commitments may be made during requirements analysis that is
difficult to change. Defining system architecture as part of requirements
analysis is usually inappropriate, and often leads to the BLOB Anti-Pattern, or

WOrse.

3.6.1.4 Refactoring Solution

As with most of the Anti-Patterns in this section, the solution involves a form of

refactoring. The key is to move behavior away from the BLOB. It may be appropriate

to reallocate behavior to some of the encapsulated data objects in a way that makes

these objects more capable and the BLOB less complex. The method for refactoring

responsibilities is described as follows:

Identify or categorize related attributes and operations according to contracts.
These contracts should be cohesive in that they all directly relate to a common
focus,. behavior, or function within the overall system. For example, a library
system architecture diagram is represented with a potential BLOB class called
LIBRARY.

In the example shown in Figure 3.1, the LIBRARY class encapsulates the sum total of

all the system's functionality. Therefore, the first step is to identify cohesive sets of

37

operations and attributes that represent contracts. In this case, we could gather
operations related to catalog management, like Sort Catalog and Search Catalog. We
could also identify all operations and attributes related to individual items, such as

Print_Item, Delete Item, and so on.

Library Main Control] [Person

+ Current_Catalog

) + Current_item
Catalog +User_ID /
+Fi
— Fine_amount
_— + Do_Inventory()

+ Check_Out_Item()
+ Check_In_ltem()
+ Add_Item() Item
+ Delete_item()

+ Print_Catalog()

+ Sort_Catalog()

+ Search_Catalog()

Figure 3.1 LIBRARY Class

Library Main Control Person

+ Current_Catalog
rTeT—— + Current_ltem

Catalog + User_ID /
| ___{ +Fine_amount ——

—_ + Do_Inventory()

+ Check_Out_ltem()
Related Methods + Check_In_ltem({)
+ Add_ltem() ltem
+ Delete_item()
+ Print_Catalog()
+ Sort_Catalog()
+ Search_Catalog() o a4

Figure 3.2 Identify LIBRARY Class Methods

2; The second step is to look for "natural homes" for these contract-based

collections of functionality and then migrate them there. In this example, we

38

gather operations related to catalogs and migrate them from the LIBRARY
class and move them to the CATALOG class.

We do the same with operations and attributes related to items, moving them to the
ITEM class. This both simplifies the LIBRARY class and makes the ITEM and
CATALOG classes more than simple encapsulated data tables. The result is a better

object-oriented design.

Library Maln Conlrel Person

+ Current_Catalog
v Current_ltem

Catalog A +User |0 /
T + Fine_amount

+Dao_lnventory()
+Check_Out_ltem()
+Check_In_ltem{)
+Add item{ x Item
+Delete_ltem()

+Print_Catalog()

+Sort_Catalog(
+Search_Catalog()

[

Eliminate coupling
by moving relation
to Catalog

Figure 3.3 Creating the CATALOG Class

3. The third step is to remove all "far-coupled,” or redundant, indirect
associations. In the example, the ITEM class is initially far-coupled to the
LIBRARY class in that each item really belongs to a CATALOG, which in
turn belongs to a LIBRARY.

4, Next, where appropriate, we migrate associates to derived classes to a
common base class. In the example, once the far-coupling has been removed
between the LIBRARY and ITEM classes, we need to migrate ITEMs to
CATALOGs, as shown in Figure 3.4.

39

Library Main Cantrol Person

+ Current_Catalog
+ Current_ltem

Catalog + User_ID /
|]

+ Fine_amount
————-_-—- -

. " + Do_tnventory()
+ Check_Out_item() .
\ + Check_In_ltem(} _————lo—1~
+ Add_Item() Item

+ Delete Itermn()

+ Print: Catalog().

+ Sort_ Catalog()

+ Search_Catalag()

-

4

Figure 3.4 Migrating ITEMs te CATALOG

S. Finally, we remove all transient associations, replacing them as appropriate

with type specifiers to attributes and operations arguments.

In our example, a Check Out Item or a Search For Item would be a transient
process, and could be moved into a separate transient class with local attributes that
establish the specific location or search criteria for a specific instance of a check-out

or search.

3.6.1.5 Variations

Sometimes, with a system composed of the BLOB class and its supporting data
objects, too much work has been invested to enable a refactoring of the class
architecture. An alternative approach may be available that provides an "80%"

solution.

Instead of a bottom-up refactoring of the entire class hierarchy, it may be possible to
reduce the BLOB class from a controller to a coordinator class. The original BLOB
class manages the system's functionality; the data classes are extended with some of

their own processing,.

The data classes operate at the direction of the modified coordinator class. This

process may allow the retention of the original class hierarchy, except for the

40

migrations of processing functionality from the BLOB class to some of the

encapsulated data classes.

3.6.2 MetaObject Facility's (MOF) Model Driven Architecture (MDA)

MDA is a way of developing applications and writing specifications, based on a
Platform-Independent Model (PIM) of the application or specification's business
functionality and behavior. A complete MDA specification consists of a definitive
platform-independent base model, plus one or more Platform-Specific Models (PSM)
and sets of interface definitions. Each interface definition describes how the base
model is implemented on a different middleware platform. A complete MDA
application consists of a definitive PIM, plus one or more PSMs and complete
implementations, one on each platform that the application developer decides to

support.

MDA is MOF compliant. This means the models — or Meta-models- produced by
MDA are designed using MOF language and terms. MDA uses Meta-models to

describe the PIMs. It is a very good tool, but it has some disadvantage including:

1. The employment of Meta-Models will raise the level of abstraction which
might leave less detail for an operational purpose.

2. According to the MDA principles there are multiple representations of
artifacts inherent in a software development process, representing different
views of or levels of abstraction on the same concepts. This includes:

a. Add to the complexity of MDA

b. Change propagates through the different views: In complex systems, a
lot of models, artifacts, and several different levels of abstraction are
required. This also increases the complexity of the relationships
between them. So when a change needs to be done in an artifact that
affects other artifacts and relationships in some cases it is impossible
to automate the entire prolcess. So a manual intervention is needed.
This is especially difficult if a change is done in the lower levels given
the fact that the most of the models at the lower levels are

automatically generated. "Some MDA proponents respond that they

41

gencerate the code from the model and then let the developers deal with
the remaining specifics of platforms, libraries, and legacy interfaces.
This is a nightmare because now the poor developer, misled by the “all
vou need is UML” hype, is stuck having to debug and develop code
that a tool generated." (Thomas, 2013)

3. MDA also requires more training and expertise. A developer must learn
additional languages used in the modeling. Since artifacts resulting from any
stage in the life cycle can impact those produced at any other stage,
knowledge of different model technologies and terminologies must exist.
Considering the sorts of transformation technologies that are a big part of
MDA, developers may also have to be fluent in various transformation
notations which can extremely be complex. This adds to the complexity of

using MOF's MDA by development teams and makes it less appealing.

In the MDA, models are first-class artifacts, integrated into the development process
through the chain of transformations from PIM through PSM to coded application. To
enable this, the MDA requires models to be expressed in a MOF-based language. This
guarantees that the models can be stored in a MOF-compliant repository, parsed and
transformed by MOF-compliant tools, and rendered into XMI for transport over a
network. This does not constrain the types of models you can use - MOF-based
langnages today model application structure, behavior (in many different ways), and
data; OMG's UML and CWM are good examples of MOF-based modeling languages
but are not the only ones. (OMG, 2014)

OMG members voted to establish the MDA as the base architecture for our
organization's standards in late 2001. Software development in the MDA starts with a
Platform-Independent Model (PIM) of an application's business functionality and
behavior, constructed using a modeling language based on OMG's MetaObject
Facility (MOF). This model remains stable as technology evolves, extending and
thereby maximizing software ROL. MDA development tools, available now from
many vendors, convert the PIM first to a Platform-Specific Model (PSM) and then to
a working implementation on virtually any middleware platform: Web Services,
XML/SOAP, EJB, C#/Net, OMG's own CORBA, or others. Portability and

42

interoperability are built into the architecture. OMG's industry-standard modeling
specifications support the MDA, the MOF; UML, now at Version 2.0; the Common
Warehouse Metamode]l (CWM); and XML Metadata Interchange (XMI). OMG Task
Forces organized around industries including Finance, Manufacturing, Biotechnology,

Space technology, and others use the MDA to standardize facilities in their domains.

The most recent OMG statement of MDA architecture and direction is this MDA
Foundation Model. It states that "Models in the context of the MDA Foundation
Model are instances of MOF metamodels and therefore consist of model elements and
links between them." This required MOF compliance enables the automated
transformations on which MDA is built. UML compliance, although common, is not a
requirement for MDA models. (This means, for example, that a suitable development
process based on OMG's Common Warehouse Metamodel can be MDA-compliant,
since CWM is based on MOF.)

The MDA Guide, Version 1.0.1, just mentioned, defines the MDA. OMG members
expect to replace this interim version with an update, based on the Foundation Model

also just mentioned, around mid-2005.

Additional OMG specifications populate the architecture. Development tools,
provided by vendors, implement these supporting standards. Working together, these
tools constitute the working MDA modeling and development environment where

architects and developers create MDA applicatioris.

Applications and Frameworks (that is, parts of applications that perform a particular
function) can all be defined in the MDA as a base PIM that maps to one or more

PSMs and implementations. Standards written this way enjoy two advantages:

The base PIM is truly a business specification, defining business functionality and
behavior in a technology-independent way. Technological considerations do not
intrude at this stage, making it easy for business experts to model exactly the business

rules they want into the PIM.

43

Once business experts have completed the PIM, it can be implemented on virtually
any platform or on multiple platforms with interoperability among them, in order to

meet the needs of the industry and companies that use it.

OMG Domain Task Forces, after years of writing specifications in only CORBA, are
now writing their base specifications in the MDA to take advantage of these

considerations.

OMG recognizes (based on analogy to the CORBA-based Object Management
Architecture) three levels of MDA-based specifications:

e The Pervasive Services, including Enterprise necessities such as Directory
Services, Transactions, Security, and Event handling (Notification).

» The Domain Facilities, in industries such as Healthcare, Manufacturing,
Telecommunications, Biotechnology, and others; and

* Applications themselves, perhaps created and maintained by a software vendor
or end user company or enterprise using MDA tools to run an MDA-based

approach, but not standardized by OMG.

44

http://www.tcpdf.org

o o iinghiiall jla

& DARALMANDUMAH

Aipadl Shag Loa Ll o cig B2 sy 10

Simplified O-O Re-Design Approach: Deriving Object Oriented 1Ulgasll
Design from Traditional Procedural Design

200 (0 i o2 Aol S3gaill o)| algoll

Al Khanjari, Zuhoor Abdullah Salim(Advisor) ton>] Hailio

2014 1.S>Maodl du, U

s o 1990

1-95 1olxaall

972147 :MD 8,

dGzol> Plw, i Sgizeall £95

English :aelll

uiow>lo alw, ragodell as)all

w8 ulblull agol> rasol=l

polell ads s sl

Uloc raJgall

Dissertations 10logleoll aclgd

c@yadesdl aduduwdl duzpinll «Olizeo,dl puouai «Oliseo | dwiid :Raolgo
Olzo,dl @wiid puowail dsle] cauclos> VI oSl Jd= oy
aycoog0ll

https://search.mandumah.com/Record/972147 ol

abga=o Jgs=ll guo> .dnglhioll jls 2019 ©
01 aclb o Jroz liSoy abgazo yuindl gi> gao ol lode il Ogé> Olesl go 2850l Blasyl (sle sby aslio 85kl 0id
2urai s (csigSIVI ! of iVl g8lge Jio) @liws Si e il of Jusmdl of gl gioyg aid suasell plaziwW ssloll
Aoghiodl ,ls of ,uindl Bgi> Llesl Lo slas

www.manharaa

https://search.mandumah.com/Record/972147

Chapter 4: Simplified O-O Redesign Approach

The proposed approach is a series of steps. It aims to form a basis for an object
oriented design in the form of an object repository from which a full object oriented

design can be formed. The nature of the approach has four main characteristics:

Provides design level solution
Incorporates an organizational point of view in the design

Provides reusability

W e

Makes it easy to use by development teams

Easy to use by
Development
Team

Reusability

Organization

Point of view

Figure 4.1 Characteristics of the proposed solution

45

4.1 Provides Design Level Solution

Systems which have been used for a long period of time have a solid business logic
which has been obtained through stable requirements and thorough analysis. The
requirements define what the stakeholders expect the system to do. The Analysis
represents the developers' interpretation of the requirements. If any defects in the
requirements are evident, then the users of the system will abandon using it since it
does not satisfy their expectations. If the analysis isn’t solid, then the resulting system
functionality will result in erroneous operations halting the use of the system like

wise.

If the system proves useful for a long period of time, then both requirements and
analysis prove themselves to be solid. In such long running systems, the changes are
usually done to cover quality attributes such as: scalability, reusability, or
maintainability. All of which can be handled in the design phase. Starting at the
design of the system, the process of redesigning the system will ensure the stability of
the requirements. This have been proven to be solid through usability and
stakeholders' satisfaction, and maintaining the right business logic. This business logic
is obtained through the initial analysis of the system, and proven by the long and right

results of the system.

It is essential to realize the difference between a quality attribute missing from the
system, and a system defect. Quality attributes can be added through redesigning the
system to incorporate them. However, if the defect is in the system requirements, or
the correctness of the system functionality, redesigning the system will not solve it. A

thorough look through these phases should be taken to solve such problems.

Why not start at the implementation phase? Starting at the design phase ensures we
have a broader look at the system as a whole, and not consider implementation issues.
It gives us a broader look at the system. Implementation will carry the design
implications in it. For example: we cannot use an Object Oriented Programming
Language to its full potential if the design does not adhere to such a paradigm.
Usually, if we design in a procedural fashion, the resulting implementation will be

procedural regardless of the programming language used. Besides, design applies to a

46

larger context than the implementation because of its abstract nature which is not

constrained by language.
Starting at the design level of the system ensures five main advantages:

1. Do not change user requirements which the original system has delivered.

2. Keep the same business logic used in the current system for correct operation.

3. Do not waste time on re-gathering requirements already gathered, and re-
analyzing them again, which carries the danger of changing the ongoing
functionality of the current system.

4. Ensures a broader look at the system as a whole.

5. Ensures the use of the programming language to its full potential.

4.2 Incorporating an organizational point of view

Each organization has a set of goals it tries to achieve, and a set of interests. These
goals and interests represent the vocal point on which all of the organizations

operations try to achieve or serve.

The majority of enterprise systems are built to serve a purpose in an organization. A
successful system has to touch these interests and goals through its business logic. In
doing so, it serves the strategically interest of the organization. It will add value to
both: the organizations' other systems and to its own design if the design is done

through the organization's point of view.

Designing software which serves a certain problem domain works, but it won't apply
or serve a solution in another problem domain. This can be solved when the problem
domain is considered through the scope of the organization for which the software is
developed. This broadens the problem domain and hence broadens the designed

solution.

If the design is achieved by taking the organizational point of view of the problem
domain, it will make it apply to more problem domains in the same organization. This

is because it serves the strategically important interests and goals of the organization.

47

This builds a common ground between the solutions causing them to aid each other's

operation and business logic.

The Simplified O-O Redesign Approach takes into consideration the main interests of
the organization. This must be done at the beginning of the design process, because it
will affect the nature of the objects on which the design will revolve. These objects
will serve as a basis for future designs and will standardize the design of such pivotal

objects representing the long lasting interests of the organization.

Organizational interests
and goals

Figure 4.2 Organizational Interests and Goals in relation to Systems' Designs

4.3 Provides reusability

Reusability is essential for the solution because it adds to the lifetime of each design,
Instead of constraining it to the problem domain at hand, it makes it applicable to a
wider problem domain. This will become inherent to the object oriented design
resulting from this approach since the resulting objects are either representing
organizational level interests or system specific attributes in an independent abstract

way.

The design level reusability is superior to the usual implementation level reusability

because of three reasons:

48

1. It is independent of any implementation level restrictions of language specific
limitations.

2. It represents the objects in the most abstract level without the implementation
specifics, Hence, less effort and time spent in reuse. At the same time, the reused
objects won't be too abstract to be applicable.

3. It gives a better view of the objects in the context of the problem domain and

better understanding of how the object is used.

Reusability will cut down the design effort and time in future systems and sometimes
in the same system if the same object is used in different parts of it. This leads to
faster development. It also affects the testing phase of the system, since the designed

objects need not be tested as units, but only in the context of the problem domain.

4.4 Makes it easy to use by development teams

One of the major obstacles which stands in the way of development teams when
trying to use the object oriented approach is the knowledge base of object oriented
paradigms. Some of the main reasons behind not adopting the object oriented

approach for new systems are:

1. The shift in the way of thinking from a procedural "function and data" oriented
design. In procedural design, the problem domain is viewed as a linear one
dimensional space, and the solution design is a series of steps which follows
this domain in its linearity. However, in O-O design, a more abstract and
hierarchal problem domain, and the solution design is represented through
objects and relations between them.

2. The knowledge base associated with object oriented design is large. It includes
new notations, new diagrams, and new relations. It is a whole new paradigm
by its own.

3. Development teams have been using the procedural approach for development
for too long. They are used to it, and change will cost a delay in upcoming

new software development.

49

The proposed detailed steps of design phase needs to be easy to use, and doesn’t need
the learning process of the object oriented paradigm. It needs to provide the basis for
an object oriented design without the new notation. The pivots of an object oriented

design are the objects and that's what this approach produces.

4.5 The Simplified 00 Re-Design Approach

The Simplified OO Re-Design Approach is a series of simple steps that extracts the basis
for an object oriented design from a traditional procedural design. This basis is the

collection of objects which will be:

1. Strategically important to the organization and to the system which is
being re-designed.

2. Provides reusability in their design and can be used in designing new
systems according to an object oriented approach or any applicable

approach.
This collection can be used to design the object oriented design in full. The steps are:

. Identify Organizational Interests.

. Identify Modules in the system to be re-designed.

1

2

3. Categorize Modules.

4, Module Decomposition.
5

. Filter and categorize the resulting objects.

4.5.1 Step 1: Identify Organizational Interests

Every organization has long lasting interests which identify the context on which the
operations conducted in the organization run. These interests provide a guide line for
developers on which objects reside in the outer problem domain outside the systems

they develop and might affect the designs they come up with for the systems.

In the proposed approach, this step is essential to the coming steps for the following

reasons:

50

1. Identify the candidate vessels for an organizational level objects which can
be reused across all other designs in the organization.

2. These interests are the material manifestation of the mission of the
organization at hand. They represent its core busfness logic which has to

be served on ever operation level.

This step is done on a level higher than the design of the system at hand. It takes a
wider look at the system from an organizational perspective not only in the context of

the problem domain.
These interests can be identified in using different methods, like:

I. Analyze mission statements of the organization at hand: Mission
statements usually describe the core business logic and long term goals and
interests of the organization.

2. Study shared parts of existing systems: long running systems usually
have interoperable parts. If these parts are studied they can provide an
overview of the organization wide important entities. These parts can be
found in:

a. Inter-System exchanged data through messaging mechanisms
like: message queues, messaging services...etc. Which are set on
an organizational level between systems

b. Shared database objects between systems: shared database
objects like: tables, views, and store procedures represent entities

needed across the organization's systems.

This step is the corner stone of the approach because it provides an organizational
view of the needed objects. This is essential in coming into a design which is reusable

on a broader level, which means a larger problem domain.

4.5.2 Step 2: Identify Modules in the System to be Re-Designed

Even within a procedural design, the system is made up of smaller parts or modules.
This is mainly due to the business logic which divides the system's logic into smaller

business rules. Sets of business rules constitute a module.

51

Usually, a module is concerned with one coherent part of the system execution. It
deals with a finite known set of attributes, functions, and database objects. A module

is more of a logical unit which connects these entities in certain known operations.

Modules interact with each other through different means, like: Global variables,
messages, or database objects. These means provide information about the state of the
system and the state of its execution. This leads — in some cases- to inaccuracy of the
information due to the global and linear nature of the procedural design. These
information need to be contained in a more autonomous entities which can hold them

and regulate their update and use.

r-J'-\ttributes j sAttributes
*Functions sFunctions
eData Storage (Db sData Storage (Db
Tables) Tables)

~— —)

sAttributes sAttributes

=Functions *Functions

sData Storage (Db =Data Storage (Db
Figure 4.3 Contents of System Modules

Tables) Tables)

\ S

Since modules are logical units which are concerned with a set of related operations
and attributes in the system, each module can be identified if these operations and
attributes can be identified. Here are two module identification guides used in this

proposed approach:

1. Documentation: If the development team is lucky enough to find a full

documentation of the current system, the design and the individual
52

modules can easily be identified in the documentation of the system. If part
of the documentation is available the module can be either derived from
the available diagrams, like: Data Flow Diagrams (DFDs) or through
studying the available system description.

Graphical User Interface (GUI) screems: if no documentation is
available, then the best option is to use the GUI screens to identify the
modules. Usually, each GUI screen is concerned with one system module.
It encompasses all needed information for the completion of one or a set of
related tasks. For example: Retrieving, editing, adding personal
information of a user in a system is usually done in one screen that

encompasses these operations, and the needed user information.

Identifying the modules in a system is essential because it separates the work load,

and it establishes that logical separation. This could aid into deriving the objects

easily from the current design by identifying these related attributes and the

operations which use them.

4.5.3 Step 3: Categorize Modules

A system is composed of modules as we have explained previously. These modules if

identified can be investigated further and categorized. A module can affect a system

by the following means:

1.

Direct relation to the business logic: The module in this case is an
integral part of the business module. It affects the operations in which
essential data is manipulated or used into deriving the final critical result.
These modules usually cannot be discarded and affect the value of the
system in the problem domain the system is associated with. As a result it
affects the organization's work as a whole.

Related to the data manipulation but not with the business logic of the
system: The modules here are usually concerned with dealing with data
representation and formats. They do not relate directly to the problem
domain of the current system and they do not affect the business logic of

the system design.

53

3. Related to some technical aspects of the system: The modules here are
related to a more technical side of the system. They affect the operability
of the system on its own and its interoperability in respect to other
éystems. Sometimes they deal with some technology specific issues like

how to connect to different data storage technologies.

In dealing with the identified modules from the previous step in the approach, it is
important to classify the degree in which the module is essentia] to the system at hand.
According to how modules affect a system discussed previously, the detailed steps of

the design phase categorize modules into three main categories as follows:

1. Core Modules: these modules can be identified using the following
guidelines: .

a. They usually relate directly to the organizational interests and goals
identified in the first step of the detailed steps of the design phase. If a
module deals with the organizational interests, then it is not Jjust essential
to the current system's business logic but to the organization's busines$ or
operations. This means it is a part of the bigger problem domain not Just
the one related to the system. '

b. The business logic of the system relies on the module. It represents a set of
the system requirements and this is either explicitly evident in
documentation or can be identified by examining the requirements set.

¢. Discarding them from the current design will cause the system to fail
producing the right results or will hinder current workflow of the system.
Hence, these modules are essential to the continuity of the system in the
current problem domain and can't be ignored.

2. Sec;,ondary Modules: these modules are usually peripheral to the system's
business logic and operational flow. They usually deal with the representation
or manipulation of data, such as: sorting, conversion, or transfer.

3. Utility Modules: These modules have the following characteristics:

a. Like the core modules, discarding them from the design will disrupt the
systems operational flow. But the problems caused by discarding them are

more technical than logical —business logic related- problems.

54

b. Deal usually with systems' interoperability and the ability of the system to
operate in the technological context of the organization. For example: how

the system deals with different data storage or database technologies.

This step in the detailed steps of the design phase is important because it shows which
modules contributing the most to the business logic of the system. This ensures three

main advantages:

. Maintaining sound business logic: The core modules represent the
essence of the system's business logic and giving them a higher priority
ensures maintaining the operations and attributes which give the
system its value,

2. Keeping the system interoperable and technology adaptable: This
is achieved by identifying the utility modules and prioritizing the
issues which they address in their design.

3. Optimizing the redesign process in the following steps: This is
because the next steps will only deal with the core modules to maintain
the business logic intact. Also, the next steps will only choose from the
utility modules which are still applicable in the current intended
redesign, since some of the technical issues they deal with might be out

of date or could be ignored.

55

:- Relate to _ngi nzational Interesrs
* Deal with Business Logic
Can't Discard

A
LIS

* Technological Issues

o Interoperability

I- Can't be discarded

L

Utility

[
r
i

* Data representation and B

Seco N d 3 ry | manipulation

L-—Ean be discarded L o

Figure 4.4 Modules Categories in a System

4.5.4 Step 4: Module Decomposition

A module in design is a logical unit. This unit encompasses related attributes-data-
and functionality. This collection of data and functionality usually serves one aspect

of the system and usually this collection relates to each other in a cohesive manner.

Because the attributes and functions in a module relate to each other in the context of
the functionality which the module represents in the system, the module can be
decomposed to the objects which represent the logical unit of these related attributes

and functions.

In this step the approach of detailed steps of the design phase looks for attributes and
functions with which it fills the objects which are represented by the organizational
interests identified in the first step. These interests represent empty vessels and they
are in turn representing object candidates. The developer in this step fills these empty

vessels with related attributes and related function which use these attributes.

The attributes and functions used can be identified using any available documentation.
If no documentation is available, then the screen in the graphical user interface of the

system can serve as modules where fields represent attributes and functions are

56

represented by explicit functions in toolbars or by deriving them from the purpose of
the screen or using it. Database tables can be used to identify modules since each table

is a collection of a logically related columns and each column represents an attribute,

For example in Figure 4.5, the system has two object vessels of type Person and
Telephone, and a Person Module which consists of a name, a birth date, and a
telephone number attributes. The decomposition step in the approach will decompose
the Person module by taking the attributes and filling the object vessels according to

the following:

1. Person object: It will contain the name and birth date attributes. This will lead
in moving getAge() function to it.

2. Telephone object: It will get the telephone attribute and an appropriate get
function will be defined an called getNumber()

Person [edcm |
*Int telNumber !
. (} !
Module - .
Person
Telephone

Telephone i:;'L‘.Nu,_:‘:,':?;“"” N §

Figure 4.5 Example of Module Decomposition
The decomposition step (Step 4) consists of sub steps. Which are:

1. Assign the attributes in the module to their related object vessel: in this
sub-step the attributes are moved to their related object. This relation can be

identified by looking into database records and applying common logic into

57

grouping them into one object. For example, if there was a bank account
object vessel and the module had the attributes: accountNumber,
accountCreateDate, username, logDate, and Balance, and the accountNumber,
accountCreateDate, and balance are all in the same database table, Looking at
the attributes of the table, the developer could suggest creating a Bank
Account object. The attributes accountNumber, accountCreateDate, and
balance are all moved to the bank account object.

2. Add a single empty object vessel called "Miscellaneous object": this object
will serve as the container for all attributes and functions left in the module.

3. Move all the attributes left from sub-step "1" to the "Miscellancous object”.

4. Move all the functions to the "Miscellaneous" object.

5. Move the functions from the "Miscellaneous" to their related objects by
examining the attributes used by the functions as parameters and by applying
the following rules:

a. If the attributes belong to a vessel object, then move the function to
that object.
b. If the attributes belong to the Miscellaneous object, then:

i. If the attributes collaborate naturally with each other but do not
belong to any existing object then create new vessel object and
move these attributes to the new vessel object.

il. If they don't collaborate naturally with each other, then keep
them in the Miscellaneous object.
¢. Ifthey are mixed between vessel objects and the Miscellaneous object,
then keep the attributes and related functions in the Miscellaneous
object.

6. Repeat sub-step 5 until all attributes and functions are removed from the
Miscellaneous object. Keep in mind a threshold of repetitions, If the
repetitions' threshold is reached, then the Miscellaneous object is left as it is.
The iterations in sub-steps "1" and "5" have to take into account the new

vessel object created in step "5".

This step is essential to the approach because it specifies the objects which represent

the business logic contained in the module being decomposed. The resulting set of

58

objects represents as a whole the module which has been decomposed. In essence, this

identifies the objects which represent the business logic in the module.

It is noteworthy in sub-step "5" of this step it is possible to use the Lack of Cohesion
of Methods for more experienced development teams. This method computes the lack
of cohesion in a single module by testing for common attributes between pairs of

functions.

4.5.5 Step 5: Filtering and Categorizing the Resulting Objects

In this step, the approach takes the resulting sets of objects which have resulted from
decomposing the core modules of the system. The step consists of intersecting,

comparing and deriving new objects from the resulting sets.

Since each module will result in a set of objects after decomposing it, the step will
intersect each set of objects with other resulting sets. Then the results of this
intersection of each pair of sets are compared. This comparison will rely on the fact
that some of the objects will be redundant in some modules — especially objects which
represent the organizational interests-. The better candidate to represent the object is
picked and the other one is dropped. The redundant objects are filtered according to

the following rules:

o If the object is originating from a module which primarily holds information
on the same logical unit then it is picked over any other object in any
decomposition set. For example, if an object which holds information on bank
accounts originated from a bank account module, and another originating from
a budget module, then the Bank Account object from the bank account module
is chosen because it is native to the original module.

* If the object is more descriptive (e.g. has more attributes), then it is chosen

over the other redundant ones after analyzing the extensibility of that object.

Any objects left out of the intersection and haven’t been dropped in the comparison
are used to derive new objects in light of the organizational interests and the system's

business logic.

59

The resulting objects are then categorized into three main categories:

1.

Organizational Objects: They represent the organizational interests directly,
and should have priority in the design of new systems or the redesign of
existing ones. They are usually the result of intersecting all of the objects sets.
System Specific Objects: They reflect the business logic of the system. They
are usually the result of intersecting pairs of object sets.

Miscellaneous Objeets: They represent some technical considerations, or
platform dependency workarounds. They are usually the result of

decomposing utility modules.

After categorizing the resulting objects, they are assembled into a large design

repository. This repository will contain essential objects on the organization level, on

systems level and on a technical level.

4.6

The Result of the Simplified 0-O Re-Design Approach

The result of the approach is basis for an 0-O design. This basis incorporates an

organizational view of the system objects, which adds value to the solution for the

organization as a whole, and deals with its core business logic. The repository

resulting from the approach can be used as a source of object of new designs. This has

two main advantages:

1.

It is design reusability at its best, where object designs in the repository are
reused in new systems or even in the redesign process of existing system. This
reusability will lead to less design time and will affect the development time
directly,

It imposes a standard representation of objects on the whole organization.
The new systems will adhere to the designs in the repository and this will
cause less systems' integration issues in the future because the objects being

communicated are designed in a unified manner.

The proposed approach (Simplified O-O Redesign Approach) itself is not meant for

Software Engineering professionals. It needs minimal knowledge of O-O principals,

and uses fewer notations. It i§ suitable for teams which want to move fast and need

60

just a point to start for a full O-O design. Hence fulfilling the easiness of use of the

approach the solution requires for it to be more appealing for adoption by

development teams.

61

http://www.tcpdf.org

o o iinghiiall jla

& DARALMANDUMAH

Aipadl Shag Loa Ll o cig B2 sy 10

Simplified O-O Re-Design Approach: Deriving Object Oriented 1Ulgasll
Design from Traditional Procedural Design

200 (0 i o2 Aol S3gaill o)| algoll

Al Khanjari, Zuhoor Abdullah Salim(Advisor) ton>] Hailio

2014 1.S>Maodl du, U

s o 1990

1-95 1olxaall

972147 :MD 8,

dGzol> Plw, i Sgizeall £95

English :aelll

uiow>lo alw, ragodell as)all

w8 ulblull agol> rasol=l

polell ads s sl

Uloc raJgall

Dissertations 10logleoll aclgd

c@yadesdl aduduwdl duzpinll «Olizeo,dl puouai «Oliseo | dwiid :Raolgo
Olzo,dl @wiid puowail dsle] cauclos> VI oSl Jd= oy
aycoog0ll

https://search.mandumah.com/Record/972147 ol

abga=o Jgs=ll guo> .dnglhioll jls 2019 ©
01 aclb o Jroz liSoy abgazo yuindl gi> gao ol lode il Ogé> Olesl go 2850l Blasyl (sle sby aslio 85kl 0id
2urai s (csigSIVI ! of iVl g8lge Jio) @liws Si e il of Jusmdl of gl gioyg aid suasell plaziwW ssloll
Aoghiodl ,ls of ,uindl Bgi> Llesl Lo slas

www.manharaa

https://search.mandumah.com/Record/972147

Chapter S: Case Study: Social Network Analysis
Tool

The case study is about a Social Network Analysis (SNA) tool. The tool basically
keeps track of relations using two entities: People and Organizations. The relations are

as follows:

e People to people.
e Organizations to Organizations.

e People to Organizations.

The tool provides information on the people, organizations and the relations between
them. This information provide references for future enquiries for employment and
candidacy for governmental positions, enquiries about organizations which represent
public and private sectors, and the relations between people and organizations as in

employment for example.

5.1 The SNA Tool Design

The tool has been designed for MARKAZ organization in 2000, and developed and
deployed in early 2001. The initial design concentrated on the use of the system and
the data as individual parts of data. The design concentrated on the business logic and
how to present the data at the screens level. It didn’t invest in defining objects to hold
these collections of related data and functions. The resulting design was a pure

procedural design.
The system suffered from some quality issues:

1. Integration issues with other systems: The system had to be used in isolation
from the other systems which are related directly to its use. For example, the
Human Resources system depends on the information provided by the SNA
tool in the process of recruitment and follow up on current employees and
their relations. This information had to be supplied manually to the HR system
due to the different design in data structures used in the HR system and the

SNA tool. Another example would be integration with the financial system.

62

Where the companies which offer tenders for jobs are investigated for security
reasons for approval. The SNA had the information, but communication
between the financial system and the SNA had to go through an intermediate
tier so the data is manipulated to match each system back and forth,

2. System limitations: The system screens and forms were initially based on
paper work provided by the concerned department at the organization. So, it
literally duplicated the limited fields on the system screens. This had limited
the possibility of extending the data the system offers in both quantity and

type.

The design was never reused in new systems. This is largely due to the nature of the
procedural design. The design concentrated on functionality rather than the data
collections being used along the business logic. The design localized the solution to
the problem domain of the system, and didn’t take into account the larger problem

domain which is the organization itself.

The system has been used for early 2012 where the approach was used to derive the
objects out of the old design and achieve a full object oriented design out of them. In

the next sections the application of the approach on the old system will be shown.

5.2 Application of the Simplified 0-0 Re-Design Approach on
the SNA tool Design

The design of the SNA tool was not documented, so the approach had to rely on the
Graphical User Interface of the system as the available source of modular separation

in the system.

5.2.1 Step 1: Identify Organization's Interests

The organization where the system is used —Markaz- is a government organization in
Oman. The mission statement clearly describes its mission as: "Provide stratigical
overviews about organizations and people of interest and relations between them to
the interested government entities". The mission statement clearly identifies 3 main

entities:

1. People.
63

2. Organizations: public or private.

3. Relations between them.

The government entities of the organization at hand deals with are either:
organizations or people who represent the government. So the main interests of the
organization derived from the mission statement are: People (Persons), Organizations,

and Relations.

These interests will serve as our object candidates or object "vessels" in the next steps.
The reason they are important is that they bring an organizational depth to the solution

rather than a localized solution to the problem.

Organization

People

(Persons)

k)

{ i

Organizations

_ J
Figure 5.1 Organizational Interests in Markaz

64

5.2.2 Step 2: Identify the Modules in SNA tool

Since no formal documentation of the current system's design was available to
identify the modules from it directly, the Graphical User Interface and the Database

tables were the main guide to identify the modules which the system consists of.

The screens provided the functional separation in the system. Usually, each screen is
concerned with one aspect of the system functionality, like adding a new person,
editing its information, or deleting it. At the same time, the fields of information in

each screen provided a guide to the available attributes in the module.

The database tables on the other hand, gave a precise look on the used attributes. Each
DB table is a collection of related data fields portrayed in each system screen. The
data are represented by columns in each table. These columns collaborate naturally to

create one logical unit to represent the attribute of one module or part of it.

As a consequence, each screen or database table is a candidate for a module. Qur
approach choose the screens as the source of modular separation rather than DB
tables, because they are more visual and functionality can be derived from them more
than DB tables. At the same time, the DB tables provided guidance on what the
technical aspect of the design.

There were three main screens to the system:

1. System Initial screen: In this screen the user chooses to connect to the old legacy
database. This had information gathered by different applications prior to the
development of the current system, and these information are used in the current
system. The other option was to connect to the new SQL server database which
the current system was built upon. When the user makes the choice then a
different method of connection is used depending on the choice.

2. Personal screen: This screen showed the basic personal information of the person
in question. It also showed the relations this person had with:

a. Other person (people} and the type of the relation.

b. Organizations, but not necessarily on the system database.

65

C.

Two addresses: since the initial design was based on the paper work used
which had only two blocks for addresses, so did the screen. This limited
this type of relation to two addresses only.

Three telephone numbers: for home, work, and mobile. This also limited
the use of these fields since a person can have one or more telephone

number for his/her home, work, or mobile.

3. Organizations Screen: this screen showed the related information about the

organization, like:

a.
b.

a o

Organization Number.

Organization Name.

Establishment date.

Organization Address.

Organization Telephones,

Organization Structure: This represented the hierarchy of the

organization as in job designations and the person in that position.

Since each screen represents a distinctive feature of the system, each screen can serve

as module. So according to the screens the SNA tool consists of three modules:

1.

Personal Module: This module is concerned with personal information,
its relation and any additional information relates to a person.
Organization Module: This module holds the information about an
organization and its hierarchy.

DB Module: This module is represented by the initial screen. It dictates
the database connection used in the system and any other DB related

issues.

5.2.3 Step 3: Categorize Modules

The purpose of the system is to maintain information on people, organizations, and

the relations between them. So the system's business logic revolves around these three

main entities. The personal and organizational modules are considered core modules

according to the approach for the four following reasons:

66

1.

They are part of the main business logic of the system. Discarding one of them
will hinder the operation flow of the system. For example, if the organizational
module was discarded, then the information about organizations can’t be
maintained in the system. Therefore, the system will lose an integral part of its
business logic. The same goes for the personal module,

Both the personal module and the organizational module have dedicated database
tables. This means they are part of the data design of the system, and the

information they hold is a main part.

- Each one of these modules has dedicated screens in the graphical user interface.

This means they constitute a large portion of the requirements for the end user,

and the initial design put so much emphasis on them.

4. They match the organizational interests identified in the first step directly.

So the core module category for this system includes two modules: the personal

module and the organizational module.

The Database module dictates the access to the database and the operations done on

the database level by the following:

It is used in the initial screen to let the user decide which database to connect to.
There are two databases used by the system. The first one is a legacy Oracle
database, and the second one is a Microsoft SQL Server. The DB module sets up
the system's connection to either one of these databases.

According to the database connection selected by the user, the DB module then is
used across the Personal and Organizational module for the Read and Write
operations from and to the database of choice. This could provide a logging

capability to the system. It acts like a logical Data Access layer above the actual

database,

The DB module is categorized as a utility module for two reasons:

I.

It doesn't represent any part of the business logic of the system. It deals directly

with DB connection and DB operations.

67

2. Even though it's not part of the business logic of the system, discarding it will
cause the system to lose an important feature. This feature is connecting to both

the old legacy database by oracle and the new MS SQL server.
So, the system consists of two Core modules:

I. Personal Module.

2. Organizational Module
The DB module represents the utility module.

5.2.4 Step 4: Module Decomposition

According to the organizational interests which were identified in the first step, the
main objects candidates or object "vessels" are the: People (persons), organizations,
and relations vessels. The object vessels are empty object candidates that will serve as

starting point in the decomposition process in this step.

It was mentioned previously in the module identification step, that screen in the GUIL
served as the modular separation guide. They also contain the used atiributes in each

module, and the main operations.

In the case study, the personal module was chosen as an example. The step was
performed on it and then it was performed on the organizational module. Each of the

modules' decompositions resulted in two sets. These sets will be used in the next step.

The personal information screens are represented in the figures next:

68

paif S e aMasndl GlSa

WSagiasnadl casaw sasl waaaes

Sagiaall casiw sasl oyl

Figure 5.2 Main Personal Screen With personal relationships

ITTZOWA Quascuall oo,
Sogaaidl seeo v aw so>l Saedl
PRl S e dManll OlSe 1983, ,.a0q 12 = sdMaall 2wl

= = ‘J_.?l..l-hl
o [rsa | mte [[Sene || cans]i

Figure 5.3 Main Personal Screen With organization relationships

69

—
AW Codaglmadt
ATTZOWA Qeas.uall ps,;
Sagaidl soco wiaaw sl el

- anafi5sme sManl olSoe 1983, ,.o9¢ 12 i= siaedl e,
-

e SAND & 3ot
N e evy | perveny peree

o\ oy

Tol . ue Y wlgus
SalUall/ 3 s

sepelh Anae T wlgas
‘ TAAA A5 fTTTA e

Uios Sl

Figure 5.4 Personal screen with relations addresses

WTTEZOTVA Qacasull oo,
wSogaiaill dao whu s ool Sl

psofiS,e sMasdl GlSe 1983, ,.o0¢ 12 = sAaedl zu,b

= - CARMLE 3 feolas
[Craiipa || Cmtoe [ctnsn | cemn.

Tioviers oJiandl
Qavoooio Jlaadl
YUY Lol

Figure 5.5 Personal screen with relations to telephones

The personal screen in this case study represents the personal module. It contains the

following information:

® Person's main information. (To part of the figures 5.2-5.5)

70

* Relations to other persons. (Figure 5.2)
» Relations to organizations. (Figure 5.3)
¢ Address information. (Figure 5.4)

e Three telephone numbers. (Figure 5.5)

The personal main information includes the following attributes as derived from the

screen:

» PersonNumber: unique system identifier.
» PersonName : a long string representing the person's name,

e DateOfBirth.
e PicturePath: a file path to a picture of the person.

The person to person relations include:

. The related person's name.

. Relation type.

The person to organizations relations include only the organization's name. The
person's address information includes two addresses. The telephone information

includes three phone numbers: home, work, and mobile.

The operations on the top toolbar include: a save operation, a delete operation, and
exiting the screen. The ones of interest are the saving and delete operations.
Operations are not as direct as the attributes to identify, so some analysis should be
applied. Taking the save operation as an example, five operations or methods can be
derived in the light of the five different parts in the personal screen. It is as the

following:

» Save Person's main information.
s Save Relations to other peréons.
¢ Save Relations to organizations.
¢ Save Address information.

» Save three telephone numbers.

71

The first three methods take a person's number as a parameter. The latter two take the
address type and telephone type as parameters respectively. The delete operation can
be considered either a general delete for the whole five parts of the personal séreen, or
several delete operations can be derived like how it was done with the save operation.
According to the system use, the delete is a collective delete which deletes all the

information on a person. So, the personal module looks like the following figure:

|
'\ N
*PersonNumber t

*PersonName
*DateOfBirth
*Addressl
sAddress2
*HomeNumber
sMnhileNumber
WorkNumber

Personal :
*PicturePath
M o d u I e ;:SaveRérsoE(personNumher_)

=SavePersonPersRelations{personNumhber)
*SavePersonOrgRelations(Personiumber)
sSaveAddress(addressType)
*SaveNumber(phoneType)
*SavePicture(PicturePath)
*DeletePerson(PersonNumber)

e . . I

Figure 5.6 Personal Module

-

The approach's decomposition process is applied in this step as follows:
1. Assign Attributes to Vessels:

In step one of the approach, three main entities were identified, which are: Person,
Organization, and relations the approach uses these three as the object vessels where

the attributes will be assigned as the following:

¢ The Person object will take the Person Number, Person Name, and Date of
Birth attributes, because they map naturally to a person. They are also part

of the personal information stored in the database.

72

e The Organization object will take the Organization Name, since it’s the
only attribute which maps naturally to the organization's information
directly,

» The Relation object doesn't have any attribute which maps to it naturally.
The relation type in the person to person relation is too generic to be
included in an object. This object vessel can be taken into consideratibn

when all the objects are identified and filtered at the final step.

The Person object and the Organization object are shown below:

Person

Organization

PersonNumber | | eOrgName
e PersonName ;
e DateOfBirth

Figure 5.7 Person and Organization Objects

2. Add the empty object called the Miscellaneous Object.
3. Attributes left in the Personal module are put in the single Miscellaneous Object.

The Miscellaneous object is represented in Figure 5.8:

* Address1

= Address2

* HomeNumber
MobileNumber
WorkNumber
PicturePath

Figure 5.8 Miscellancous Object

73

4. Put all the methods in the Miscellaneous Object. The Miscellaneous object is

shown in Figure 5.9:

« Addresst !
¢ Address2

+ HomeNumber

* MobileNumber

* WorkNumber

» PicturePath

» SavePerson(personNumber)

« SavePersonRelations{personNumber)
= SaveQrgRelations(PersonNumber)

* SaveAddress{addressType)

* SavePhone([phonéType)

» SavePicture{PicturePath)

* DeletePerson(PersonNurmber)

Figure 5.9 Miscellaneous Object after Adding Methods

5. Move each method to its object by applying the rules in the chapter 4. Each
method is examined by looking at its parameters as the following:

i. If they belong to a Vessel Object, Move the method to the vessel

object. This applies to the SavePerson() SavePersonRelations(),

and SaveOrgRelations() methods since they use Person Number as

a parameter. They are moved to the Person Object.

* PersonNumber i
* PersonName i
= DateOfBirth !
= Save(personNumber) I
* SavePersonRelations(personNumber) !
= SaveOrgRelations(PersonNurmniber) l
= Delete(PersonNumber) l

Figure 5.10 Person Object after Adding Methods

ii. If they belong to Miscellaneous Object, then leave the method or
create new Vessel if the attributes collaborate naturally. Address]

and Address2 collaborate naturally, and represent the same logical

74

entity which is an Address. Same is for the Telephone Numbers
where a Telephone Object can be created. The picture path can be
used to create a picture object too. So, the new derived objects
from the collaborating attributes are: An Address Object, a
Telephone Object, and a Picture Object. Some analysis must be
applied to these objects' design to extend their design to be more

usable. The resulting object will look like the following figures:

L cmail PhoneType '

* POBox ¢ .

= PostalCode * Country * PicturePath
= Street s CountryCode '

« House '« Number |

= City

= Region

* Country

Figure 5.11 Address, Phone, and Picture Objects

iti. If the parameters are mixed between the Miscellaneous Object and
the other objects, then leave the methods in the Miscellaneous
Object.

The Miscellaneous Object will look like the following figure:

’ = SaveAddress{addressType)
= SavePhone(phoneType)
® SavePicture(PicturePath)

Figure 5.12 Miscellaneous Object after Adding Methods

6. Repeat the process while taking into account new Vessel Object. The objects at

the end of this step will look like the following.

75

Pers + ~ Address
Organization

* PersonNumber ::,.:':sswpe
« PersonName =OrgName POBOX

= DateOfBirth PostalCode

* Save(personNumber) Street

= SavePersonRelations(personNumber) House

= SaveOrgRelations(PersonNumber)

City
* Delete(PersonNumber) = Country
= PhoneType
Picture = Country

- = CountryCode
* PicturePath * Number

LI I I B I B

Figure 5.13 Objects resulting from step 4

At the end of the decomposition step the Personal Module has been decomposed to

five main objects: Person, Organization, Address, Phone and Picture objects.

Organization

Figure 5.14 Decomposition of the Personal Module

The organizational module has undergone the decomposition process and the resulting
objects were: Organization, Person, Address, Phone, Logo (Picture), and Designation

objects.

76

. %

\a

Organizatianal
Module

Figure 5.15 Decomposition of the Organizational Module

5.2.5 Step 5: Filtration of the Object Sets

The set of objects resulting from the modules after decomposition are filtered and
categorized to obtain the final set of objects that will be used for the O-O design of the
system. There are redundant objects in the object sets resulting from the
decomposition process like: Person, Organization, Address, Phone, Picture. The

objects are chosen among the different sets as the following:

® The Person Object from the Personal Module is chosen because it is original to the
personal information found in the Personal Module.

* The Organization Object is chosen from the set of the Organizational Module,
because it is part of the original module of the organizations' information.

® The other objects are chosen according to their extensibility. The Address Object

is chosen from the Personal Module. The Phone and Picture objects are the same

in both cases, so either one will suffice.

The Designation Object left from the Organizational Module is then analyzed in light
of the organizational interests. One of the organizational interests object vessel has not
been addressed in the Decomposition Process is the Relation Object. In an abstract
look, a person's designation in a company is the position of a person in an

organization. This position is nothing but a relation between the two. Hence,

77

Designation can be looked at as an object of type relation which connects two objects.

This is demonstrated in the following figure:

Relation

q HEENL ———— OReIationType

* ObjectOne |
| * ObjectTwo

Designation

Figure 5.16 Deriving the Relation Object

Now, the Relation Object is an encapsulation which holds two objects and defines a
relation type between the two. It is a generic object which maps to the organizational

interests and puts the objects together.

The objects after filtration are: Person, Organization, Relation, Address, Phone, and

Picture, They are categorized as follows:

* On the organizational level: Person, Organization and Relation are categorized
as organizational level objects because they represent the organizational interest,
® On the system level: Address, Phone, and Picturc are categorized as system

objects (specific to the SNA tool).

The repository after filtration and categorization looks like the following figure:

78

Organizational

[
Person !

| Organization j
Relation

Figure 5.17 The Repository in MARKAZ

This repository is the basis for the new O-0 design of the system. The organizational
part of it represents long term goals and interests, and the system part of it represents

objects specific to the system at hand.
The resulting objects made it possible to:

* Extend the relation between entities in the system. For example, a person under
this design can have more than two addresses like in the old system design. The
person to person relation is more than just a name and a relation type. It is now a
relation between two persons. Each of them is uniquely identified and has its own
data.

* The system to system integration issues are now minimized due to the standard
design of objects which are ready to use from the repository of objects.

» The repository gives better choices for future designs when it comes to object
design. Each object can be extended and encapsulated to tailor it better for a
specific system, but still keep it original base object standard design for

interoperability between systems.

79

5.3 Going further with the Simplified 0-0 Redesign Approach

The nature of the repository and the objects is dynamic. For instance, the Person
Object has been used in several systems’ designs as in the HR system, the Recruitment

System, and the Retirement System by applying O-O principles.

A person in the real employment process is transferred between three systems: The
Recruitment System as a candidate or a recruit, the HR System as an employee and in
the Retirement System as a retired employee. In the old design, this cycle was done
manually by adding in one system and deleting in another. With the new design it is
simply done by inheriting the Person Object into a Candidate Object and a Recruit
Object to be used in the Recruitment System. Then the base Person Object data is
transferred from Recruitment to HR System and then using the CurrentEmployee
object to live in the employment domain. The CurrentEmployee object is inherited
from the Person Object. When the employee is retired the base object is used again to
transfer the data to the Retirement System on the fly. The person now is a Retired
Object. The information in all of the cycle is kept, and the communication between
the systems was done on line. The standard design and the O-O approach eased the

process and made the three systems interoperable.

The Scenario above is shown in Figure 5.18.

Person

l Employee \ l Candidate Recruit
' Current \ l Retired ’

Figure 5.18 Applying Iheretance to the Repository Objccts

80

http://www.tcpdf.org

o o iinghiiall jla

& DARALMANDUMAH

Aipadl Shag Loa Ll o cig B2 sy 10

Simplified O-O Re-Design Approach: Deriving Object Oriented 1Ulgasll
Design from Traditional Procedural Design

200 (0 w2 Aol Ssgaidl o)| algoll

Al Khanjari, Zuhoor Abdullah Salim(Advisor) t o> Hailio

2014 1.S>Maodl du, U

ba o 18990

1-95 1olxaall

972147 :MD 8,

&ol> Jilw, i Sgizall £95

English :aelll

iow>lo allw, ragodell as)all

a8 ulblull aeol> rasol=l

rolell ads radsdl

Uloc raJgall

Dissertations 10logleoll aclgd

el adududl auzpinl] cOlizo | paouai «Olizeo | dwiid :Raolgo
Olzeo,dl @wrid puswaill 8sle] (auclosz VIl OlSudl Jd= aso
aycoog0ll

https://search.mandumah.com/Record/972147 ol

abga=o Jgs=ll guo> .dnglhioll jls 2019 ©
oi acld 9| Juozs Sy Cdog.o.zo sisdl 898> guo> U| lode il d99.> ulz.o| &0 &gl SVl (sle by aslio dslodl 01
b 25 Vg (csig SV sl ol iVl g8lgo Jio) aliaws o1 pae sainill ol Jugill of ganill gioug oasd (asaiall plaiawdl) 83Loll

Q.ogJa...oJ|)|> 9|)...u..J| Ygé> ul:e.o| [SY)

www.manaraa.c

https://search.mandumah.com/Record/972147

Simplified 0-O Re-Design Approach: Deriving Object Oriented Design from
Traditional Procedural Design

Ahmed Al-Shandoudi

Abstract

Object oriented software engineering has proven to be a powerful tool in developing huge enterprise
libraries. Yet, it comes with new notations and a number of diagrams, which traditional software
engineering practitioners are not well acquainted with. The change of the development approach from a
traditional approach to an O-O approach can prove to be costly, and incorporates a lot of new
techniques and procedures. This thesis identifies the steps in moving an application from a traditional
design paradigm to an object-oriented paradigm. It uses an example of Social Network Analysis tools
where modules were decomposed to objects and operations, implementation changed, data storage was

changed, and free relations between objects were introduced in the final OO application.

The main purpose for the change was the versatile nature of objects. Using the ready traditional design
will cut the time for the designers and developers alike. The introduction of objects will lead to more
reusability. The OO design provides clearer separation between objects; hence there is more

specialization.

This move can be achieved by identifying the main modules in the original design. Then they are
decomposed into processes and components. In each component, there'is a need to identify objects and
operations, and define possible relations between objects. On the data storage side, each derived
object's data should stand alone in a relational data base. Relations between objects are represented as

pair of keys in relation tables.

Studying the move, it was found that deriving the new OO design depends on the main interests of the
hosting organization. The level of abstraction of the original design dictates the change. By using OO
techniques such as inheritance and such would be used for creating specialized components from the

new design.

The findings are significant becanse they show that the team knowledge affects the move greatly. The
degree of abstraction in an object is essential for future benefit of the OO design. The move to an OO
design is an intermediate step. It can be the basis for more specialized solutions using the produced

objects.

Ll kil apanal (e GS AN (8 g ga panall atiddu) :Misdblgéw:\eﬂ:u

@A galddl daaa O i (i daal
LAl

paokacill (5 giane o eyl aransd (8 2558 8 L 58501 oo g e ggier Sl Aunia
O opatiall s sl gunige Laaling o A1 A0l JIKEVD 5 a8 (e apally Al 1iS) Zeaial
0S5 O SVl gl pelt o 338 el el Y Aol Ahubal dn il o preaill Angia B gl
B o Gagie J5UT As gl e Baal Cultu) 5 Ll e aall e (g ki el LS dilka
& Cun AelaaWh sl s Gl pracad o Tilee ey 4 Ll Cum AN o3g) i sl

AR ananat 8 AT U Sal e dama 5l 45 €l peabiall g asal gall Gadiasial

A Lgaladiuf falef SVl Cun Jalaill 33y po (o pral sall dasiiLe a onndll et) gl

LelisSe M i Sl sia dilad o8 calaill dpuei,fl cliSall o Gipetll JMA e (San sl 138
W Chlaal) 5 apal gall GaBatul i jeaWl b Sall A ey LgianT PP QL LS| PR IO
iy Lpiany sl galf day 35 Al 8l o o petl) XS gy a3

ot el JUsil patiad Al A pall Aacadt) cldda¥t o sty adl aad eadll dud s NS e
O BAELYY b oSay pparadll 5 Sl Cleabiatal fpu Jadl 5 ot e ol G dagenss
O A2l G (e B30 auil ge sanad 2B Cus A d) 3) i poual galt ted 38 palt il

P S D gon sall Cilima bl it Guuds precatl (33 58 48 jae of i et A 5 HlY1 Aan] e
Lgba BalitaY) jhaie o A5 sl Lo (e Aol paniad gall 8 g 50l A o of Syl e Lo
ISV U et g oy Soked (a sl Sdad G LS 58l Ao st ge iyl A (e

Adide culma py Anis Sl (o Al aadiad U 8 41

http://www.tcpdf.org

o o iinghiiall jla

& DARALMANDUMAH

Aipadl Shag Loa Ll o cig B2 sy 10

Simplified O-O Re-Design Approach: Deriving Object Oriented 1Ulgasll
Design from Traditional Procedural Design

200 (0 w2 Aol Ssgaidl o)| algoll

Al Khanjari, Zuhoor Abdullah Salim(Advisor) UNTCY VTS

2014 1S3>l Zu, U

b o 1990

1-95 1olxaall

972147 :MD 8,

&ol> Jilw, i Sgizall £95

English :aelll

iow>lo allw, ragodell as)all

a8 ulblull deol> rasol=l

rolell ads radsdl

Uloc raJgall

Dissertations 10logleoll aclgd

@y el adududl aazpinl] cOlizo | puouai «Oliseo | dwiid :Raolgo
Ol dl @wrid puswaill 8sle] (auclosz VIl OlSudl Jd= aso
aucoog0ll

https://search.mandumah.com/Record/972147 ol

abga=o Jgs=ll go> .dnglhioll jls 2019 ©
ois acld 9| Juozs Sy Cdog.o.zo indl 898> guo> U| lode il d99.> ulz.o| &0 &gl SVl (sle by aslio dslodl 01
b 25 Vg (csig SIV sl ol iVl g8lgo Jio) aliaws o1 pae sainill ol Jugill of Eanill gioug tasd asaiall plaiawdl) 83Loll

Q.ogJa...oJ|)|> 9|)...u..J| Ygé> ul:e.o| [SY)

www.manaraa.c

https://search.mandumah.com/Record/972147

Table of Contents

ACKNOWLEDGMENT

ABSTRACT

Laddlf

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

CHAPTER 1: INTRODUCTION
11 A GENERAL OVERVIEW FOR SOFTWARE ENGINEERING
1.2 THE AIM OF THE PROJECT
1.3 PURPOSE AND MOTIVATION OF THE PROJECT

1.4 THE SCOPE OF THE PROJECT

1.5 ORGANIZATION OF THE THESIS
CHAPTER 2: SOFTWARE ENGINEERING APPROACHES
2.1 VARIOUS APPROACHES FOR SOFTWARE ENGINEERING
2.1.1 Traditional Approach
2.1.2 Component-Based Approach
2.1.3 Object-Oriented Approach
2.2 Process MODELS
2.2.1 Traditional Process Models
2.2.1.1 Waterfall Model
2.2.1.2 Build-and-Fix Model
2.2.1.3 Rapid Prototyping Model
2.2.14 Incremental Model
2.2.1.5 Spiral M?del

2.2.2 Component Based Models

Vi

Vi

Xl

10

14

15

17

19

19

20

22,

23

2.2.2.1 Stojanovic Process Modet 24

2.2.2,2 COSE Process Model 24

223 Ohject Oriented Process Models 26
2.2.3.1 Fountain Model 26

2.2.3.2 Unified Software Development Process 27

2.2.3.3 Rational Unified Process 28

CHAPTER 3:LITERATURE REVIEW 30
3.1 18SUES WITH TRADITIONAL PROCEDURAL DESIGN 30
3.2 THE OBIECT ORIENTED SOLUTION TQ THESE PROBLEMS 31
3.3 WHERE DOES OBIECT ORIENTATION HAVE TO START IN A PROCESS? 32

3.4 WHY DEVELOPMENT TEAMS HESITATE TO ADOPT OBIECT ORIENTATION iN THEIR DEVELOPMENT PROCESS? 33

3.5 WHAT QUALITY ATTRIBUTE OF THE OBJECT ORIENTED APPROACH IS THE MOST IMPORTANT TO INCORPORATE AND

WHEN TO ESTABLISH IT? 33
3.6 RELATED WORK 34
3.6.1 Refactoring {BLOB) Anti-Pattern 34
3.6.1.1 General Form 35

3.6.1.2 Symptoms and Consequences 36

3.6.1.3 Typical Causes 36

3.6.1.4 Refactoring Solution ‘ 37

3.6.1.5 Variations . 40

3.6.2 MetaObject Facility's (MOF) Model Driven Architecture (MDA) 41
CHAPTER 4: SIMPLIFIED O-O REDESIGN APPROACH 45
4.1 PROVIDES DESIGN LEVEL SOLUTION 46
4.2 INCORPORATING AN ORGANIZATIONAL POINT OF VIEW 47
4.3 PROVIDES REUSABILITY 43
4.4 MAKES IT EASY TO USE BY DEVELOPMENT TEAMS 49
4.5 THE SIMPLIFIED OO RE-DESIGN APPROACH 50
4.5.1 Step 1: Identify Organizational Interests 50

Vil

4.5.2 Step 2: ldentify Modules in the System to be Re-Designed
453 Step 3! Cotegorize Modules
4.5.4 Step 4: Module Decomposition
4.5.5 Step 5: Filtering and Categorizing the Resulting Objects
4.6 THE RESULT OF THE SIMPLIFIED O-O RE-DESIGN APPROACH
CHAPTER 5: CASE STUDY: SOCIAL NETWORK ANALYSIS TOOL
5.1 THE SNAToOL DESIGN
5.2 APPLICATION OF THE SIMPUIFIED O-O RE-DESIGN APPROACH ON THE SNA TOOL DESIGN
521 Step 1: ldentify Organization's Interests
522 Step 2: ldentify the Modules in SNA tool
523 Step 3: Categorize Modules
5.2.4 Step 4: Module Decomposition
5.25 Step 5: Filtration of the Object Sets
5.3 GOING FURTHER WITH THE SIMPLIFIED O-O REDESIGN APPROACH
CHAPTER 6: CONCLUSION AND FUTURE WORK
6.1 THE OBIECT REPOSITORY FROM ANOTHER PERSPECTIVE
6.2 FUTURE WORK
REFERENCES

APPENDIX A: SNA SYSTEM SCREENS AND PART IMPLEMENTATION

Vil

51

53

56

59

60

62

62

63

63

65

66

68

77

80

81

83

84

86

920

http://www.tcpdf.org

o o iinghiiall jla

& DARALMANDUMAH

Aipadl Shag Loa Ll o cig B2 sy 10

Simplified O-O Re-Design Approach: Deriving Object Oriented 1Ulgasll
Design from Traditional Procedural Design

200 (0 i o2 Aol S3gaill o)| algoll

Al Khanjari, Zuhoor Abdullah Salim(Advisor) t o> Hailio

2014 1S3>l Zu, U

s o 1990

1-95 1olxaall

972147 :MD 8,

dzol> Pilw, i Sgizall £95

English :aelll

wiow>lo alw, ragodell as)all

w8 ulblull agol> rasol=l

pelell & s s sl

Uloc raJgall

Dissertations 10logleoll aclgd

c@yadesdl aduduwdl duzpinll «Olizeo,dl puouai «Oliseo ,dl dwiid :Raolgo
Olzo,dl @wiid puowaill dsle] caucloi> VI oSl Jd= oy
aycoog0ll

https://search.mandumah.com/Record/972147 ol

abgizo Jgi=l grox .angliiall > 2019 ©
3lall 01 aclbs ol Jaoz liSoy cabgazo ,unll Sgi> gao ol lale il D> olseol 2o 590ll JLO.AH wde sy aslio dslodl 01
oo s zupai Ugs (g uSIVI 3l of sVl g8lge Jio) @liws S e il of Jugmdl of dowidl gioyg Jasd wsvaseid] plassw\
Aoghioll ls of pindl Bgi> Lol

www.manharaa.c

https://search.mandumah.com/Record/972147

!

Simplified O-O Re-Design Approach:
Deriving Object Oriented Design from
Traditional Procedural Design

Ahmed Saif Mohammed Al-Shandoudi

A thesis submitted in partial fulfillment
of the requirements for the degree
Master of Science
in

Computer Science

Department of Computer science
College of Science
Sultan Qaboos University

Sultanate of Oman

2014

Thesis of: Ahmed Saif Mohammed Al-Shandoudi (I.D. #: m084744)

Title of Thesis: Simplified O-O Re-Design Approach: Deriving Object Oriented
Design from Traditional Procedural Design

Thesis Committee:

1. Supervisor: Dr. Zuhoor Al-Khanjari
Title: Associate Professor
Department: Computer Science

College: College Of Scje

Signaturei............c St e Date. 2-(3/ 7 /25) , C\—

2. Member: Dr. Abdullah Al-Hamdani

Title: Assistant Professor

Department: Computer Science

College: College Of Science ,

Institution: Sultan Qaboos University

Signature:........ Q Date....z...! . /'?Z /2 Q / gL

3. Member: Dr. Asma Al- Busaidi
Title: Assistant Professor
Department: Computer Science
College: College Of Science

Institution: Sultan Qaboos University

Signature:....w_%.—.—.—ﬁvm.l.3......Date.—g./.f:./.!2>..l Y

Thesis Examining Committee:

1. Chair: Prof. Mujibur Rahmen

Title: Chairman of the Examination Committee
Department: Physics

College: College Of Science

Institution: Sultan Qaboos University

Signature: Mykm. . G)Mmcm— Date...2a/7/2n /4.

2. Supervisor: Dr. Zuhoor Al-Khanjari
Title: Associate Professor
Department: Computer Science -

College: College Of Science

Signature:............5.... =Date. ZQ] 7/2.»0 l 4;

3. Member (HoD representative): Dr. Youcef Baghdadi
Title: Associate Professor
Department: Computer Science
College: College Of Science
Institution: Sultan Qaboos University
(1
Signatures............ (\QJ__) Date...?z.‘??,z 7’// l/
4. External Examiner: Dr. Mohammed Sarrab
Title: Research Associate

Center: Communication and Information Research Center

Institution: Sultan Qaboos University

Signature: &%’—_—, s Date.. 224, ?Z"’L‘l

------ i--uo..n..-...-

Acknowledgment

Thanks are due to Allah, for every success is due to Allah’s mercy. I thank Allah for the strength which
was bestowed upon me, and the patience which was given to my family, coworkers, and supervisor.
For without them I would have given up.

I thank my mother, my wife, and children for they have brought everything good in me. They sacrificed
their time and neglected their joy to support me.

1 would like to thank my supervisor for her relentless effort in gniding me. She has been patient and
above all understanding. I would like to thank my thesis committee for their support.

1 would like to thank Dr. Naoufel Kraiem for the time and help he has given me.

Finally, I thank my late father. For he has been my inspiration to be strong and triumphant.

i

Simplified 0-O Re-Design Approach: Deriving Object Oriented Design from
Traditional Procedural Design

Ahmed Al-Shandoudi

Abstract

Object oriented software engineering has proven to be a powerful tool in developing huge enterprise
libraries. Yet, it comes with new notations and a number of diagrams, which traditional software
engineering practitioners are not well acquainted with. The change of the development approach from a
traditional approach to an O-O approach can prove to be costly, and incorporates a lot of new
techniques and procedures. This thesis identifies the steps in moving an application from a traditional
design paradigm to an object-oriented paradigm. It uses an example of Social Network Analysis tools
where modules were decomposed to objects and operations, implementation changed, data storage was

changed, and free relations between objects were introduced in the final OO application.

The main purpose for the change was the versatile nature of objects. Using the ready traditional design
will cut the time for the designers and developers alike. The introduction of objects will lead to more
reusability. The OO design provides clearer separation between objects; hence there is more

specialization.

This move can be achieved by identifying the main modules in the original design. Then they are
decomposed into processes and components. In each component, there'is a need to identify objects and
operations, and define possible relations between objects. On the data storage side, each derived
object's data should stand alone in a relational data base. Relations between objects are represented as

pair of keys in relation tables.

Studying the move, it was found that deriving the new OO design depends on the main interests of the
hosting organization. The level of abstraction of the original design dictates the change. By using OO
techniques such as inheritance and such would be used for creating specialized components from the

new design.

The findings are significant becanse they show that the team knowledge affects the move greatly. The
degree of abstraction in an object is essential for future benefit of the OO design. The move to an OO
design is an intermediate step. It can be the basis for more specialized solutions using the produced

objects.

Ll kil apanal (e GS AN (8 g ga panall atiddu) :Misdblgéw:\eﬂ:u

@A galddl daaa O i (i daal
LAl

paokacill (5 giane o eyl aransd (8 2558 8 L 58501 oo g e ggier Sl Aunia
O opatiall s sl gunige Laaling o A1 A0l JIKEVD 5 a8 (e apally Al 1iS) Zeaial
0S5 O SVl gl pelt o 338 el el Y Aol Ahubal dn il o preaill Angia B gl
B o Gagie J5UT As gl e Baal Cultu) 5 Ll e aall e (g ki el LS dilka
& Cun AelaaWh sl s Gl pracad o Tilee ey 4 Ll Cum AN o3g) i sl

AR ananat 8 AT U Sal e dama 5l 45 €l peabiall g asal gall Gadiasial

A Lgaladiuf falef SVl Cun Jalaill 33y po (o pral sall dasiiLe a onndll et) gl

LelisSe M i Sl sia dilad o8 calaill dpuei,fl cliSall o Gipetll JMA e (San sl 138
W Chlaal) 5 apal gall GaBatul i jeaWl b Sall A ey LgianT PP QL LS| PR IO
iy Lpiany sl galf day 35 Al 8l o o petl) XS gy a3

ot el JUsil patiad Al A pall Aacadt) cldda¥t o sty adl aad eadll dud s NS e
O BAELYY b oSay pparadll 5 Sl Cleabiatal fpu Jadl 5 ot e ol G dagenss
O A2l G (e B30 auil ge sanad 2B Cus A d) 3) i poual galt ted 38 palt il

P S D gon sall Cilima bl it Guuds precatl (33 58 48 jae of i et A 5 HlY1 Aan] e
Lgba BalitaY) jhaie o A5 sl Lo (e Aol paniad gall 8 g 50l A o of Syl e Lo
ISV U et g oy Soked (a sl Sdad G LS 58l Ao st ge iyl A (e

Adide culma py Anis Sl (o Al aadiad U 8 41

Table of Contents

ACKNOWLEDGMENT

ABSTRACT

Laddlf

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

CHAPTER 1: INTRODUCTION
11 A GENERAL OVERVIEW FOR SOFTWARE ENGINEERING
1.2 THE AIM OF THE PROJECT
1.3 PURPOSE AND MOTIVATION OF THE PROJECT

1.4 THE SCOPE OF THE PROJECT

1.5 ORGANIZATION OF THE THESIS
CHAPTER 2: SOFTWARE ENGINEERING APPROACHES
2.1 VARIOUS APPROACHES FOR SOFTWARE ENGINEERING
2.1.1 Traditional Approach
2.1.2 Component-Based Approach
2.1.3 Object-Oriented Approach
2.2 Process MODELS
2.2.1 Traditional Process Models
2.2.1.1 Waterfall Model
2.2.1.2 Build-and-Fix Model
2.2.1.3 Rapid Prototyping Model
2.2.14 Incremental Model
2.2.1.5 Spiral M?del

2.2.2 Component Based Models

Vi

Vi

Xl

10

14

15

17

19

19

20

22,

23

2.2.2.1 Stojanovic Process Modet 24

2.2.2,2 COSE Process Model 24

223 Ohject Oriented Process Models 26
2.2.3.1 Fountain Model 26

2.2.3.2 Unified Software Development Process 27

2.2.3.3 Rational Unified Process 28

CHAPTER 3:LITERATURE REVIEW 30
3.1 18SUES WITH TRADITIONAL PROCEDURAL DESIGN 30
3.2 THE OBIECT ORIENTED SOLUTION TQ THESE PROBLEMS 31
3.3 WHERE DOES OBIECT ORIENTATION HAVE TO START IN A PROCESS? 32

3.4 WHY DEVELOPMENT TEAMS HESITATE TO ADOPT OBIECT ORIENTATION iN THEIR DEVELOPMENT PROCESS? 33

3.5 WHAT QUALITY ATTRIBUTE OF THE OBJECT ORIENTED APPROACH IS THE MOST IMPORTANT TO INCORPORATE AND

WHEN TO ESTABLISH IT? 33
3.6 RELATED WORK 34
3.6.1 Refactoring {BLOB) Anti-Pattern 34
3.6.1.1 General Form 35

3.6.1.2 Symptoms and Consequences 36

3.6.1.3 Typical Causes 36

3.6.1.4 Refactoring Solution ‘ 37

3.6.1.5 Variations . 40

3.6.2 MetaObject Facility's (MOF) Model Driven Architecture (MDA) 41
CHAPTER 4: SIMPLIFIED O-O REDESIGN APPROACH 45
4.1 PROVIDES DESIGN LEVEL SOLUTION 46
4.2 INCORPORATING AN ORGANIZATIONAL POINT OF VIEW 47
4.3 PROVIDES REUSABILITY 43
4.4 MAKES IT EASY TO USE BY DEVELOPMENT TEAMS 49
4.5 THE SIMPLIFIED OO RE-DESIGN APPROACH 50
4.5.1 Step 1: Identify Organizational Interests 50

Vil

4.5.2 Step 2: ldentify Modules in the System to be Re-Designed
453 Step 3! Cotegorize Modules
4.5.4 Step 4: Module Decomposition
4.5.5 Step 5: Filtering and Categorizing the Resulting Objects
4.6 THE RESULT OF THE SIMPLIFIED O-O RE-DESIGN APPROACH
CHAPTER 5: CASE STUDY: SOCIAL NETWORK ANALYSIS TOOL
5.1 THE SNAToOL DESIGN
5.2 APPLICATION OF THE SIMPUIFIED O-O RE-DESIGN APPROACH ON THE SNA TOOL DESIGN
521 Step 1: ldentify Organization's Interests
522 Step 2: ldentify the Modules in SNA tool
523 Step 3: Categorize Modules
5.2.4 Step 4: Module Decomposition
5.25 Step 5: Filtration of the Object Sets
5.3 GOING FURTHER WITH THE SIMPLIFIED O-O REDESIGN APPROACH
CHAPTER 6: CONCLUSION AND FUTURE WORK
6.1 THE OBIECT REPOSITORY FROM ANOTHER PERSPECTIVE
6.2 FUTURE WORK
REFERENCES

APPENDIX A: SNA SYSTEM SCREENS AND PART IMPLEMENTATION

Vil

51

53

56

59

60

62

62

63

63

65

66

68

77

80

81

83

84

86

920

List of Figures

Figure 2.1 Mapping between design steps and related techniques

Figure

2.2 CBD maturity phases

Figure 2.3 Object-Oriented Application

Figure

Figure 2.5 Waterfall with post installation check Process Model (Pressman, 2014)

2.4 Waterfall Process Model

Figure 2.6 Rapid Prototyping Model (Pressman, 2014)

Figure
Figure
Figure

Figure

Figure 2.11 Unified Process phases (Kroll and Kruchten, 2003)

Figure 2.12 Rational Unified Process (Kroll and Kruchten, 2003)

2.7 Incremental Model (Pressman, 2014)
2.8 Spiral Model
2.9 COSE Process Model (Dogru and Tanik, 2003

2.10 Fountain Model

Figure 3.1 LIBRARY Class

Figure 3.2 Identify LIBRARY Class Methods

Figure 3.3 Creating the CATALOG class

Figure 3.4 Migrating ITEMs to CATALOG

Figure

Figure 4.2 Organizational Interests and GoalsIn relation to Systems' Designs

Figure
Figure
Figure
Figure

Figure

4.1 Characteristics of the proposed solution

4.3 Contents of System Modules

4.4 Modules Categories in a System
4.5 Example of Module Decomposition
5.1 Organizational Interests in Markaz

5.2 Main Personal Screen With personal relationships

14

17

19

21

22

25

27

27

29

38

38

39

40

45

48

52

56

57

64

69

Figure 5.3 Main Personal Screen With organization relationships
Figure 5.4 Personal screen with relations addresses

Figure 5.5 Personal screen with relations to telephones
Figure 5.6 Personal Module

Figure 5.7 Person and Organization Objects

Figure 5.8 Miscellaneous object

Figure 5.9 Miscellaneous Object after adding the methods
Figure 5.10 Person Object after adding methods

Figure 5.11 Address, Phone, and Picture Objects

Figure 5.12 Miscellaneous Object after adding methods
Figure 5.13 Objects resulting from step 4

Figure 5.14 Decomposition of the Personal Module

Figure 5.15 Decomposition of the Organizational Module
Figure 5.16 Deriving the Relation Object

Figure 5.17 The repository in MARKAZ

Figure 5.18 Applying Iheretance to the Repository Objects
Figure A.1 Login Screen

Figure A.2 Selection Screen

Figure A.3 Person Personal Relations

Figure A.4 Person Organization Relations

Figure A.5 Person Address Relations

Figure A.6 Person Telephone Relations

Figure A.7 Person Class

Figure A.8 Organization Person Relations

69

70

70

72

73

73

74

74

75

75

76

76

77

78

79

80

20

20

91

91

92

92

93

93

Figure A.9 Organization Organization Relations
Figure A.10 Organization Addresses Relations

Figure A.11 Organization Telephone Relations

Figure A.120rganization Class

Xl

85

85

95

96

List of Tables

Table 1.1 Research Methodology Phases...........occoveeieeeeeee s eeteeeeseeee oo eess e eseeeeee] 6
Table 2.1 Analysis and design phases for Object-Oriented Approachccoceovveverveeeeenn. 11
Table 2.2 Life cycle deliverables ..o oo viiieiieieeeceeeeeee e s et ee e s et se 16

Table 6.1 Comparison between Simplified O-O ReDesign Approach, MOF’ MDA and
Refactoring ANtIPAMII.....c.iiuei it esseeete e e e e et s esne e eeeesseee v 83

Xl

Chapter 1: Introduction

Software, as a product, delivers the computing potential embodied by computer
hardware. It is used to transform, produce, manage, acquire, modify, display, or
transmit information. Information can be as simple as a single bit or as complex as a

multimedia simulation (Pressman, 2014).

Software development or application development is the process of developing a
single application or a full functional integrated system. In its basic form, it is the
coding or implementation of the application at hand, but in a more broader
professional sense it is all that is involved between the conception of the desired
software's specifications through to the final manifestation of the software, ideally in

a planned and structured process.

As the complexity of the desired solution or system increases, the need for a well
planned and well executed process increases. The engineering aspect of the software
development addresses this issue. Software Engineering is defined as the application
of a systematic, disciplined, quantifiable approach to the development, operation and
maintenance of software; in other words it is the application of engineering techniques
and strategies to software. It is based on three layers: process, methods, and tools.
Software Engineering process is the glue that holds the technology layers together and
enables rational and timely development of computer software. Software Engineering
methods provide the technical “how to’s” for building software. Methods encompass
a broad array of tasks that include requirements analysis, design, implementation,
testing, and maintenance. Finally, Software Engineering tools provide automated or
semi-automated support for the development process and the methods used in

Software Engineering (Pressman, 2014).

Software Engineering defines an abstract representation of a process methodology,
known as the process model. Each methodology constitutes a framework used to
structure, plan, and control the process of developing a system. Waterfall and Agile
represent process models. They don't specify how to do things, but they outline the

types of activities, which are done. For example, Waterfall identifies the phases that a

1

project goes fhrough without saying what artifacts to produce or what tools to use. .
This is also the case with Agile model, which defines core values in the form of the
Agile manifesto, time-boxed iterations, and continuous response to change, but it
doesn't say how long your iterations should be or how your response to changes
should be.

On the other hand, a software process methodology is a specific way of conducting a
software project, like the Rational Unified Process and Scrum. They define exactly
what, when, and/or how various artifacts are produced. They might not be entirely
explicit with all regards. For example, Scrum doesn't identify what documents to
produce or not to produce, since its focus is on delivering value to the customer, But

they define, in some way, the actions that members of the project team must follow.

Many models and methodologies of Software Engineering have been theorized. Early
cxamples of the software development methodologies were the Waterfall model,
Spiral, and Prototyping models. It is worth noting that these models have emerged out
of need to control the development and carry it in a systematic manner. Some of them
have emerged to help overcome the challenges that earlier models couldn't; such as,

rapid delivery, or excess documentation overhead.

It is important to stress on a pivotal point. There is no such this as the "one for all”
solution when it comes to software development. Each model can be refined and
customized to meet the needs and standards of the development team. In some cases,
a model can be a hybrid model of many, or a tailored cut of one model, It just needs to
meet the standards of the management and the requirements of the client in order for it

to work.

1.1 A General Overview for Software Engineering

According to Pressman in his book in 2014, Software Engineering moved into its
fourth decade in the 90s. Also, throughout the industry, “software engineer” has
replaced “programmer” as the job title of preference. Software process models,
Software Engineering methods, and software tools have been adopted successfully

across a broad spectrum of industry applications (Pressman, 2014). The history of

Software Engineering begins from a traditional procedural approach that is the first
methodology in the software world. Then object-oriented and component based

approaches came into this world and brought many new useful features.

Traditional methods for the analysis and design of computer-based systems have now
been promoted for more than 40 years. Many of the organizations, which deal with
the design and construction of computer-based systems apply traditional system
development methods with varying degrees of success and there are still a great many
system developers who do not use traditional methods at all, though some of these
have attempted to introduce methods into their work practices. Where some
organizations may have found increased benefits from the adoption of such methods,
others have met only with dismay and failure (Kautz, 1999). Traditional methods
relied on defining the system as two separate entities: Data and Function entities.
These two entities would go on being traditional, planned, and controlled separately
during the process of development. This would result in a solution that might access
duplicates of data in different functions in a function oriented design, or a data that

use duplicate functions in a data oriented design.

This dispersion of data and function in traditional design created the need for a new
paradigm in Software Engineering resembling the new —back then- Object Oriented
paradigm in implementation languages. This paradigm compresses the data and
function in a single entity called objects. It defines the behavior of these objects

internally, and in relation to other objects or users in the developed system.

1.2 The Aim of the Project

The main aim of this research is to focus on identifying the steps in shifting from a
traditional procedural design to an Object Oriented (O-O) design. The steps are not
meant only for Software Engineering professionals, but also for programmers with
little Software Engineering principles knowledge. The goal is not to fully redesign the

system, but to at least have the minimum requirements, which are the objects.

Also, this project aims to apply the proposed approach on a Social Network Analysis

system in an Omani organization referred to as "Markaz". This could be achieved by

concerned with redesigning the application. The thesis at first provides background for
0-O software engineering first and then it explains the implementation, The proposed
detailed steps will serve into identifying the objects needed for redesigning the system
into the O-O paradigm. The future work would take that a step forward to derive more
of the current system in regards of diagrams and other needed documentation instead

of creating it from scratch.

As a case study, only one module of Markaz's SNA tool will be redesigned using the
O-O detailed steps. Since Markaz environment is a private and closed one, this
research skips searching for ready-made objects. Therefore, each required object is
developed by using NET frame work 4.0 In addition; GUITs (Graphical User
Interface) of each various system are developed using this approach and the MS
Visual Studio 2010 IDE and MS Expressions Blend. Meanwhile, although hardware
and software architectures of Markaz are described in the case study chapters such as
Chapter 4 and 5, specific vendors, providing technology for Markaz, software codes

and database schemas are not mentioned for security reasons.

The phases in the research methodology are shown in Table 1.1

Phase.

Proposal

Table 1.1 Research Methodology phases

NA

Duration

17-20 July 2012

Litcrature Review

1.8earch for literature
related to Procedural
Design

2.Search for literature
related to O-O desing

21 July 201221
November 2012

Literature Anzlysis

N/A

1 December 2012 -1
March 2013

Problem Definition

1.Define problem scope.

2 March 2013 — 1 May

2.Define problem parts. 2013
Develop Solution 1.Define Solution 5May 2013 -1
parameters. September 2013
2.Develop solution idea
and approach
Case Study 1.Apply solution on case 15 September 2013 —
study 5January 2014

2.Evaluate Findings

‘Write up and validation N/A 10 January 2014 —15 May

2014

1.5 Organization of the Thesis

Chapter 2 explains Software Engineering approaches in general. Chapter 2 also
describes the various approaches and process models for all these approaches are
described. Chapter 3 describes O-O development and its basic concepts, tools,
modeling languages, technologies, and promises. Chapter 4 describes the current
structure of Markaz SNA System in terms of both hardware and software
architectures. Chapter 5 describes each step of implementation of the personal module
in Markaz's SNA system. Chapter 6 is reserved for Conclusions and Suggestions in
which has some suggestions for future of Markaz's SNA system and some inferences

about Object Oriented software engineering studies.

Chapter 2: Software Engineering Approaches

This Chapter describes in detail three major approaches in Software Engineering such
as traditional, component-based, and object-oriented approaches. It describes these

approaches in details and some of the process models used for development.

2.1 Various Approaches for Software Engineering
2.1.1 Traditional Approach

This approach contains basic steps of a software development process such as
analysis, design, implementation, testing, and maintenance. This thesis focuses on
only analysis and design phases and their detailed steps. Each of the steps of the
analysis phase (Pressman, 2014) provides information that is required to create a
design architecture. The flow of information during software design is illustrated in
Figure 2.1. For specifying software, this approach offers some variety of elements
such as a data dictionary, data flow diagrams, state transition diagrams, entity-
relationship diagrams, process specifications, control specifications, and data object
descriptions for analysis phase. The design phase produces a data design, an
architectural design, an interface design, and a procedural design with the help of
various methods and techniques such as transaction mapping and transform mapping
for architectural design and structured programming, graphical design notation,

tabular design notation, and program design language for procedural design. Brief

descriptions of some favorite elements of analysis and design models are mentioned
below (Brooks, 1987):

Architectural

design \

Data design

AN

The analysis model The design model

Figure 2.1 Mapping between design steps and related techniques

7

Data flow diagrams represent the transformations of data as it flows through a system
and are the focus of SA/SD (Structured Analysis/ Structured Design). A data flow
diagram consists of processes, data flows, actors, and data stores. Starting from the
top-level data flow diagram, SA/SD recursively divides complex processes into sub
diagrams, until many small processes are left that are easy to implement. When the
resulting processes are simple enough, the decomposition stops, and a process
specification is written for each lowest-level process. Process specifications may be

expressed with decision tables, pseudo code, or other techniques.

The data dictionary contains details that cannot be included from data flow diagrams.
The data dictionary defines data flows and data stores and meaning of various names.
State transition diagrams illustrate time dependent behavior. Most state transition
diagrams describe control processes or timing of function execution and data access

triggered by events.

Entity-relationship (ER) diagrams highlight relationships between data stores that
otherwise would only be seen in the process specifications. Each ER data element
corresponds to one data flow diagram data store. In design phase, the most favorite
technique is structured programming to produce procedural design. It is performed by
languages such as Pascal, Ada and C. The broad definition of structured programming
refers to any software development technique that includes structured design and
results in the development of a structured program. Structured programming allows
programs to be broken down into blocks or procedures, which can be written without
detailed knowledge of the inner workings of other blocks. Thus allowing a top-down
design approach or stepwise refinement (Brooks, 1987). Large-scale systems, built
using this approach, are often deployed on only mainframes and minis. They feature
as mainframe-based or other non-relational database systems. Therefore, both feeling
the heat of competition, and simply looking for ways to improve software
development can be the reason for moving into object-oriented approach in industry
(Kautz, 1999).

2,1.2 Component-Based Approach

This approach is expected to revolutionize the development and maintenance of
software systems. The Gartner Group, for example, estimates that "... by 2003, 70%
of new applications will be deployed as a combination of pre-assembled and newly
created components integrated to form complex business systems." The resulting
increase in reuse should dramaticaily improve time-to-market, software lifecycle
costs, and quality (Atkinson et al., 2005). In this section the emphasis is how this
approach and its seed, CBD, are taken from previous approaches and intermediary
approaches such as distributed objects and distributed systems. Figure 2.2 depicts the
transformation that occurs after object-oriented approach. With distributed object
approach extends the object-oriented approach with the ability to call objects across
address space boundaries, typically using an “object request broker” capability. The
distributed system approach is a development approach for building systems that are

distributed, and are often represented as multi-tier.

Distributed Component

Distributed Systems

Distributed Objects

‘ Object-oriented '

Traditional development

CBD Maturity

Figure 2.2 CBD maturity phases

Many companies today claim to be following component-based development when
what they are really following is distributed system development, or using some kind
of distributed object technology. While this can deliver significant benefits, such as
allowing the technical bridging of heterogenecous systems, it does not decrease the
cost of development. It is slightly addressed by using object-oriented techniques but
not enough to make a big difference. At this point, distributed component approach is
embraced in industry to reap the desired benefits, often looked for by a software
development organization. This uses current build-time and run-time technologies
such as Enterprise Java Beans that is attempted to reduce cost and development time
for distributed systems. It becomes apparent that what is needed is something that
addresses both the challenge of distributed systems interoperability and the challenge
of how to build individual systems that can be treated as atomic units and can easily

be made to cooperate with each other (Kautz, 1999).

Despite the industrial evolution, mentioned above, component-based technology
introduces abstraction and lower-level mechanisms but has to be orchestrated into a

comprehensive Software Engineering process (Dorgu and Tanik, 2003).

2.1.3 Object-Oriented Approach

The steps of software development mentioned above are common for all Software
Engineering approaches. Therefore, analysis and design phases are inevitable for
object-oriented approach, as well. In this approach, design is divided into four

different steps as illustrated in Table 2.1,

10

Table 2.1 Analysis and design phases for Object-Oriented Approach

Phase Techniques Key Deliverables
Analysis e Collaboration Diagrams Analysis Models
e Class and Object models
: ® Analysis Modeling
System Design ¢ Deployment Modeling Overview design and
s Component Modeling Implementation
s Package Modeling architecture
e Architectural Modeling
Class Design » Class and Object Modeling Design Models
» Interaction Modeling
e State Modeling
¢ Design Patterns

Object-oriented approach promises a way for implementing real-world problems to
abstractions from which software can be developed effectively. It is a sensible
strategy to transform the development of a large, complex super-system into the
development of a set of less complicated sub-systems. Object-orientation offcrs
conceptual structures that support this sub-division. Object-orientation also aims to
provide a mechanism to support the reuse of program code, design, and analysis
models (Hill and McRobb, 2002).

This approach uses classes and objects as the main constructs from analysis to
implementation. It normally involves using an Object-Oriented language such as C++
or Java that provides (build-time) encapsulation, inheritance and polymorphism, and
the ability for objects to invoke each other within the same address space. This last

point i$ an important constraint when it comes to distributed systems.

UML (Unified Modeling Language) contains a number of concepts that are used to
describe systems and the ways in which the systems can be broken down and
modeled. The UML Specification defines the terms class and object as follows (Hill
and McRobb, 2002):

® A class is a description of a set of objects that share the same attributes,

operations, methods, relationships and semantics. Moreover, the purpose of a

11

class is to declare a collection of methods, operations and attributes that fully
describe the structure and behavior of objects.

* An object is "an instance that originates from a class. It is structured and
behaves according to its class.’ Interface is another important construct
defined as a group of externally visible operations. The interface contains no
internal structure; it has no attributes, no associations, and only abstract

operations.”

In object-orientation, three main principles are important. Encapsulation, which is also
known as information hiding, provides the internal implementation of the object
without requiring any change to the application that uses it. The ability of one class of
objects to inherit some of its properties or methods from an ancestor class is named
inheritance in object technology. Polymorphism is producing various results for a

generalized request based on the object that is sent to.
In Object-Oriented Approach objects of software can be (Brooks, 1987):

o Exiernal entities: printer, user, sensor
o Things: reports, displays

* Occurrences or events: alarm, interrupt
* Roles: manager, engineer, salesperson
¢ Organizational unit: team, division

e Places: manufacturing floor

s Structures: employee record

In this approach de facto standard notation (Hill and McRobb, 2002), UML, reveals

analysis and design phases of software development,

Use cases specify the functionality that the system will offer from the users’
perspective. They are used to document the scope of the system and the developer’s

understanding of what it is that the users require.

Classes might interact to deliver the functionality of the use case and the set of classes

is known as collaboration. Collaborations can also be represented in various ways that

12

http://www.tcpdf.org

o o iinghiiall jla

& DARALMANDUMAH

Aipadl Shag Loa Ll o cig B2 sy 10

Simplified O-O Re-Design Approach: Deriving Object Oriented 1Ulgusll
Design from Traditional Procedural Design

200 (0 i o2 Aol S3gaill o)| algoll

Al Khanjari, Zuhoor Abdullah Salim(Advisor) ton>] Hailio

2014 1S3>l du, Ul

s o 1990

1-95 1olxaall

972147 :MD 8,

dGzol> Plw, i Sgizall £95

English :aelll

uiow>lo alw, ragodell as)all

w8 ulblull agol> rasol=l

polell ads s sl

Uloc raJgall

Dissertations 10logleoll aclgd

c@yadesdl el duzpinll «Olizeo,dl puouai «Oliseo,dl dwiid :Raolgo
Olzo,dl @wiid puowaill 8sle] cauclos> VI oSl Jd= oy
dycoog0ll

https://search.mandumah.com/Record/972147 ol

abga=o Jgs=ll o> .dnglhioll jls 2019 ©

ois aclb 9| Joox eliSoy Q.]os.o.zo sidl Bg8> gao> u| ode dg.o.> ulz..a| &0 &390l BVl e by aslio 5loll 0ia
s 093 (oS 3yl ol oVl gdlgo Jio) alaug ST e sl ol Jig=dl ol gl gios chsd sasaial] plaiwM ssloll
Cl.og]a...oﬂ)|> 3|).....uJ| Ygé> ulz.o| [SY) ;sda>

www.manaraa.

https://search.mandumah.com/Record/972147

Chapter 6: Conclusion and Future Work

The Simplified O-O Redesign Approach is a process which extracts the objects from a
procedural design. The object repository which contains these objects forms a basis
for any O-O design of the system at hand. The repository represents the reference for
the needed object in any current or future system design. It adds the following

advantages to the design and the development processes:

* The objects represent organizational business logic: The Organizational
category in the repository represents the stratigical and long term interests of
the organization. They add more value to the design and hence to the system
when it's implemented.

 Standard design of object: Since the repository of objects is the single source
of designed objects, the design is then standardized. The new systems will
adhere to the designs of the objects being reused.

* Less development time: The repository holds objects which represent real life
entities. Their reusability is enhanced by the fact that they represent the
organization's interests. Even the system specific objects can be used in
designing new systems if they share the same problem domain or parts of it.
This cuts down the time needed for designing the same objects. Any
enhancements can be achieved through O-O principles, like:

© Inheritance for more specialization
o Encapsulation to collaborate different objects to extend their use.

* Less system integration issues: The standard design imposed by the
repository helps the system communicate the data of concern by using
standard designed objects. This minimizes the intermediate processing to
communicate the data.

The Proposed Approach meets the three requirements of the required solution for the
redesign, which are:

1. Starts at the design level: It concentrates on the design of the system rather
than leave the redesign to a later stage like the implementation phase. This
adds to the quality of the solution. Unlike the Refactoring AntiPattren, which

concentrates on the implementation of the system rather than the design. The

81

Refactoring AntiPattren considers the shortcomings of the procedural design
as an implementation issue, where they are a design issue which affects the
way the problem is pe}ceived. The MOF’s MDA models a solution from
scratch, it doesn’t start at the design level.

It incorporates an organizational view of the problem: By identifying the
organizational interests, and building the objects of the system around these
interests. The Simplified O-O Redesign Approach broadens the problem
domain to incorporate the strategically valuable entities to the organization in
which the system is used. This adds to the value of the solution to the
organization, and adds to the ability of the system to add to the organization’s
goals. It has the advantage over both MOF’s MDA and the Refactoring
AntiPattren. In MOF’s MDA the problem domain is localized to the problem
at hand because it doesn’t consider the strategical view of the organizations
using the modeled systems.

. It introduces Reusability: The Simplified 0-O Redesign Approach
introduces reusability on three levels:

e The Organizational level: By using the object designs in the
organizational category of the repository. This ensures satisfying the
startigical interests of the organization in every system.

* The System Level: By reusing the object designs in solution for
similar problem domains or which have to interoperate.

 The Utility level: This is a level concerned with technical
considerations. The platform of the organization is usually the same for
all systems, so it is produced to reuse ready designs from the repository
to meet such issues.

The Reusability introduced by the Simplified O-O Redesign Approach
introduces standards in design. This is largely due to the central repository of
object designs from which these objects are reused. None of the two other
approaches introduce such reusability of the three levels. Both Refactoring
AntiPattren and MOF’s MDA introduce reusability on a system level, because
they do not consider the organizational view of the system.

. It is easy to use by development teams: The complex notations and the

formal approach of the O-O approach are not used in the proposed approach
82

(Simplified O-O Redesign Approach), so the learning curve for is relatively
low. The proposed approach uses basic O-O concepts and relies on object
definitions to draw the O-O design in latter stages after the initial hard step of
identifying the objects is achieved. This makes the proposed approach superior
and more appealing to development teams than MOF’s MDA.

Table 6.1 Comparison between Simplified 0-0 ReDesign Approach, MOF’ MDA and Refactoring
AntiPattren

Simplified 0-O

MOF’S MDA iii?;:’éi:ﬁ ReDesign Approach
Design Level
Solution * *
Incorporates
Organizational View *

Introduces
Reusability ZQE ﬁ E *

Easy to Adopt by
development teams * *

6.1 The Object Repository from another Perspective

The repository serves as the basis for the Q-0 designs in the organization. The objects
represent the organization, the systems within the organization, and address some of
the technical issues related to the organization’s systems’ architecture. The designs
included in the repository help the development team in the implementation phase to
use the Object Oriented Programming Language to its full potential. It doesn’t leave
the Object Orientation to the latter stages of development and treat it as an
implementation issue. This has a huge impact on the way implementation is carried on
in any Software Engineering approach. The repository can be used as the basis for
designs using other approaches, such as: Service Oriented or Component Based

Software Engineering.

If the development team decides to expose some of the aspects of a system as a

service, the designs included in the repository can be used to create such a service.
83

The interface parts of the system needed to be used without exploiting the parts which

are supposed to be hidden from the outside world.

The same concept applies to the Component Based Approach. Components are
collection of objects, and the designs in the repository can be grouped together to
form ready to use, and standardized components without having to design the parts

which are present at the repository. (Wang, 2009)

The repository doesn’t limit the end solution to the O-O approach. It is a basis for it.
In the same time, it makes use of the powerful O-O principles which uses the Object
Oriented Programming Languages to their full potential without being confined to the

0O-O approach in the latter stages of the design.

6.2 Future Work

Future work will concentrate on formalizing a second version of the Approach for the
use of Software Engineering professionals. The process of formalizing the process

will concentrate on two aspects:

* The process model: The Approach will concentrate on the O-O approach’s
phases and take the re-engineering process in the design stage and expand it to
other stages. So it will define an approach to re-engineer a system on different
levels starting from requirements and including the maintenance process. This
will take into account the different phases iterations in the 0-O approach:
inception, elaboration, construction, and transition.

¢ The product model: The work will concentrate on translating the ready
products of the procedural approach to products of the 0-O nature. It will
formulate a framework in which a product model of the procedural paradigm
is changed to its closest equivalent in the Q-0 paradigm then deriving the rest
of the O-O product model. For example, deriving Class Diagrams from Data
Flow Diagrams, and then deriving Entity Relationship Diagrams from the
result. This will make use of the Platform Independent Modeling in MOF
standards. So it can make use of the modeling tools provided for the MOF’s

MDA for automatic generation.

84

The work will concentrate also on deriving the O-O design from different
approaches, like: Component Based or Service Oriented. This will prove
beneficiary if any of the latter approaches have design issues. The equivalent O-O
design will dissemble the main entities in their designs and will help reconstruct a
new design after addressing the issues. The new Design can be either in 0-O

approach or using the original approach of the system.

85

http://www.tcpdf.org

o o iinghiiall jla

& DARALMANDUMAH

Aipadl Shag Loa Ll o cig B2 sy 10

Simplified O-O Re-Design Approach: Deriving Object Oriented 1Ulgusll
Design from Traditional Procedural Design

2os0 (0 i (0 Ao (1 Ssgaidl o)| algoll

Al Khanjari, Zuhoor Abdullah Salim(Advisor) t o> Hadlio

2014 1.S>Maodl du, L

b o 1990

1-95 1olxaall

972147 :MD 8,

&ol> Jilw, i Sgizall £95

English :aelll

iow>lo allw, ragodell as)all

oweB ulblull aeol> rasol=l

rolell ads radsdl

Uloc raJgall

Dissertations 10logleoll aclgd

@y e adududl auzpinl] cOlizo | puouai «Oliseo | dwiid :Raolgo
Ol | @wrid puswaill 8sle] (auclosz> VIl OlSudl Jd= aseo
aucoog0ll

https://search.mandumah.com/Record/972147 ol

abga=o Jgs=ll gro> .dnglhioll jls 2019 ©
i aclb 9| Sz Sy Cdog.o.zo idl 898> guo> u| ode il .,99.9.> ulz.o| &0 &390l BlasVl e clu aslo dsloll 0id
b i s (i SIVl 3yl ol i iVl g8lgo Jin) aliaws o1 ae il of oyl of danidl gious «asd (saseaidll plasiwM 830l

Q.ogJa...oJ|)|> 9|)...u..J| Ygé> ul:e.o| [SY)

www.manharaa.¢

https://search.mandumah.com/Record/972147

References:

Al-Ahmed, W. (2006), Object-Oriented Design Patterns for Detailed Design,
Journal of Object Technology, 5(2), pp. 11-17.

Atkinson, C., Bayer, J., Laitenberger, O., and Zettel J, (2005) , Component-
Based Software Engineering: The Kobrd Approach, [online]
http://se2¢.uni.lu/tiki/se2c-bib_download.php?id=700, [accessed on:
01/12/2013)

Barton, R. (1997), Report on a conference sponsored by the NATO Science
Committee Report, Garmisch, Germany, 7™ to 11" October 1997, 3(7), pp. 23-
28.

Basili, V., Briand, L., and Melo, W. (1996), How reuse influences productivity
in object-oriented systems. Communications of the ACM, 1(9), pp. 2-8.

Batory, D. and Smaragdakis, Y. (1997), DiSTiL: a Transformation Library for
Data Structures, USENIX Conference on Domain-Specific Languages
(DSL),2(31), San Fransisco, USA, 22™ to 25" May, 4(5), pp. 12-16.

Boehm, B. W. (1976) , Software Engineering: IEEE Transactions on
Computers, C-25, 12, pp. 1216-1241,

Boehm, B. W. (1988), A Spiral Model of Sofiware Development and
Enhancement, 5/1988, 1(6), pp. 61-72.

Brooks F. (1987), No silver bullet, IEEE Computer, 20(4), pp. 29-38.

Buyya, R. (2009), Object Oriented Programming with Java: Essentials and
Applications, Tata McGraw-Hill Education.

Carlsen, 1. C., and Haaks, D. (1992), Concept and Implementation of an
Object-Oriented Framework for Image Processing, Philips Journal of
Research, 46(6) pp,.311-340.

36

Chen, K. (2004), Comparison of Object Oriented and Procedure-Based

Computer Languages, Issues in Information Systems, 5(1)

Craig, L. (1999), The interpretations of object oriented programming, Berlin,
Springer-Verlag, 8(2), pp.17-25.

Dogru, H., and Tanik, M. (2003), A Process Model for Component- Oriented
Software Engineering, IEEE Sofiware, March/April, pp.31-52.

Eden, A. (2004), Principles in Formal Specification in Object Oriented Design
and Architecture, Proc. Centre for Advanced Studies CONference—CASCON
Report, 7(5), pp. 22-38.

Fayad, M., and Tsai, W. and Fulghum, M.(1996), Transition To Object-
Oriented Software Development, Communications of the ACM, Vol. 39, pp. 2-
0.

Floyd, C, Reisin, F, and Schmidt, G. (1989), Steps to software development
with users, 2" European Software Engineering Conference, University of
Warwick, Coventry, Lecture Notes in Computer Science No. 387, Heidelberg,
Springer, pp. 48 - 64.

Hill, B.and McRobb, F. (2002), Object Oriented System Analysis and Design
(using UML), 2™ Edition, McGraw Hill.

Johnson, R.A. (2000), The Ups and Downs of Object-Oriented Systems
Development, Communications of the ACM, 43(10), pp. 69-73.

Kahler, H., Stiemerling, O. and Wulf, V. (2000), How to make Software
Softer - Designing Tailorable Applications, Proceedings of the Second
International Symposium on Designing Interactive Systems (DIS'00), ACM -
Press, New York, pp. 365 —376.

Kautz K. (1999), Introducing Structured Methods: An Undelivered Promise?,
Scapdinavian Journal of Information Systems, Oslo, Norway, 6(2), pp.59-78.

87

Kroll, P.and Kruchten, P. (2003), The Rational Unified Process Made Easy: A
Practitioner’s Guide to the RUP. ISBN 0-321-16609-4.

Lewallen, R. (2005), [online] 4 major principles of Object-Orientation, http://
www. CodeBetter.com [accessed on: 12/10/.2013].

Mack, W. (2010), Fundamental Flaws In Procedural Designs, pp. 3-5.

Meyer, B. (1988), Object-oriented software construction, Prentice Hall, PP-
112-115.

Morch, A. (1997), Method and Tools for Tailoring of Object-oriented
Applications: An Evolving Artifacts Approach, PhD-Thesis, University of
Oslo, Department of Computer Science, Research Report , pp. 241.

Narzt, W., Pichler, J., Pirklbauer, K. and Zwinz M. (1998), A Reusability
Concept for Process Automation Software, Proceedings of 11th. International

Conference Software Engineering, Paris, Preprints , 2(6), pp. 73-81.

Object Management Group (OMG), (2014). OMG Specifications: MDA
Specification, Retrieved from: [Online Thttp://www.omg.org/mof/.

Perry, D. and Wolf, A. (1992), Foundation for the Study of Software
Architecture. ACM Electronic Journal, 3(11), pp. 41-47.

Piefel, M. (1996), Information Engineering: Object Oriented Software
Development, Coursework ‘Information Engineering’, Department of

Computing, University of Bradford, 1(2), pp. 12-19.

Pressman, R. (2014), "Software Engineering: A Practitioner Approach",
McGraw Hill.

Schach, 8. R. (1999), Classical and Object Oriented Software Engineering, 4"
Edition, McGraw Hill.

838

Shvets, A. (2013), The BLOB, [online]
http://sourcemaking.com/antipatterns/the-blob, [accessed on:12/01/2014]

Simons, A. (1994), Object-Oriented Analysis and Design, Course Work on
Object Oriented Software Engineering, Department of Computer Science,
University of Sheffield, 2(1), pp. 8-17.

Taft, D. (2002), IBM Acquires Rational, EWeek, 2(6), pp. 17-19.

Thomas, D. (2013), MDA: Revenge of the Modelers or UML Utopia?, IEEE
SOFTWARE, pp. 22-24

Wang, J. (2009), Towards Component-Based Software Engineering,
[online]http://delivery.acm.org/10.1145/360000/35 7729/p182-
wang.pdf?key1=357729&key2=733745501l&coll=GUIDE&dl=GUIDE&CFI
D=36365381&CFTOKEN=91792709, [accessed on: 07/01/.2014]

Xiong, J. (2011), New Software Engineering Paradigm Based on Complexity
Science, Introduction to NSE, 3(9), pp.58-66.

89

http://www.tcpdf.org

o o iinghiiall jla

& DARALMANDUMAH

Aipadl Shag Loa Ll o cig B2 sy 10

Simplified O-O Re-Design Approach: Deriving Object Oriented 1Ulgasll
Design from Traditional Procedural Design

2os0 (0 i (0 Ao (1 Ssgaidl o)| algoll

Al Khanjari, Zuhoor Abdullah Salim(Advisor) t o> Hadlio

2014 1.S>Maodl du, L

b o 1990

1-95 1olxaall

972147 :MD 8,

&ol> Jilw, i Sgizall £95

English :aelll

iow>lo allw, ragodell as)all

oweB ulblull aeol> rasol=l

rolell ads radsdl

Uloc raJgall

Dissertations 10logleoll aclgd

@y e adududl auzpinl] cOlizo | puouai «Oliseo | dwiid :Raolgo
Ol | @wrid puswaill 8sle] (auclosz> VIl OlSudl Jd= aseo
aucoog0ll

https://search.mandumah.com/Record/972147 ol

abga=o Jgs=ll o> .dnglhioll jls 2019 ©
i aclb 9| Sz Sy Cdog.o.zo idl 898> guo> u| ode il .,99.9.> ulz.o| &0 &390l BlasVl e clu aslo dsloll 0id
b i g3 (i SIVl 3yl ol i iVl g8lgo Jin) aliaws o1 sae il of oyl of daunidl gious «asd saseaial plasiwM 830l

Q.ogJa...oJ|)|> 9|)...u..J| Ygé> ul:e.o| [SY)

www.manharaa.¢

https://search.mandumah.com/Record/972147

Appendix A: SNA System Screens and Part
'~ Implementation

The tool is used to keep track of a person’s information and social and professional

connections. These connections arc shown as connections to other people and
organizations as well.

ahmed

KRR

Figure A.1 Selection Screen

Figure A.1 is the login screen for the SNA tool where a user is authenticated against
the database records.

Figure A.2 Selection Screen

The Above screen (Figure A.2) is a selection screen where the user chooses to go to
the Personal Information screen (Figure A.3) or the Organization screen (Figure A.8)

90

@ el

Al coglmast |

| p— |

ATTZOIVA Quasc.udl o8,

m“ T ey o]

PR Ssee 3Manll OlSe 1983, ,.009i 12 0= 3dasll 2wl

T S CAS S eeldy
- [sansa | cotem | chmmia | —teans
BVl asiell £ o

+S3g sl casiw 2ol cacaes sl

Sagdasall canaws ol ol sl

Figure A.3 Person Personal Relations

The Above screen (Figure A.3) is the main Personal screen with Personal relations
information to other persons connected the loaded person.

s | P T

-
€ | cae bl
Aot ot
ITTEZOMVA Avasw.all pbd,
Sagouaidl seceoe e ol Sl

Aol Ssee SMasll UlSe 1983 , sanOgi 12 = 33l 2u,U

ARUE § eslas
[sasnpa | conte [[—tomia] ctpmna] |

Figure A.4 Person Organization Relations

The Above screen (Figure A.4) is the main Personal screen with relations to
Organizations information.

91

ITTZOIVA Azl pb,
wSagriaidl romo whasw so>] Saudi

psaifi S sMasdl UlSe 1983, ,.00gi 12 @~

Figure A.5 Person Address Relations

ITTZOUVA Qo= udl o8,
WSrgasesinll soxo whew o>l S

Pl S sMandl GlSe 1983, L.o00q 12 0= sMaodl 2wl
— SARME 3 feslas
e e [ctams | perm——
TioTiovi «oJsanll
aavocoio oIlawdl
YEUEUEW | Lol

Figure A.6 Person Telephone Relations

The Above screens (Figure A.5, A.6) is the main Personal screen with relations to
Addresses information ((Figure A.5) and Telephones relations (Figure A.6).

92

—<Global.Ficrosoft.VisualBasic -CompilerServices.Designertener ated()> _
Partial Class PersonForm
Inherits System.Windows.Forms.Form

'Form overrides dispose to clean up the component list.
= <System.Diagnostics.DebuggertionUserCode()> _
Protected Overrides Sub Dispose(ByVal disposing As Boolean)
Try
If disposing AndAlso components IsNot Nothing Then
components .Dispose()
End If
Finally
MyBase.Dispose(disposing)
End Try
End Sub

'Required by the Windows Form Designer
Private components As System.ComponentModel.IContainer

- "NOTE: The following procedure is required by the Windows Form Designer
"It can be modified using the Windows Form Designer.
‘Do not modify it using the code editor.
= <System.Diagnostics.DebuggerStepThrough()> _
Private Sub InitializeComponent()
Me.components = New System.ComponentModel.Container()

Me.ToolStripl = New System.Windows.Forms. trip()
Me.tsbSave = New System.Windows.Forms.ToolStripButton()
Me.tsbDel = New System.Windows.Forms.ToolStripButt n()
Me.ToolStripSeparatorl = New System.Windows.Forms. 1stripSeparator()
Me.tsbExit = New System.Windows.Forms.ToolStrip

Me.GroupBoxl = New System.Windows.Forms.G
Me.TextBox7 = New System.Windows.Forms.TextBox()
Me.Labell8 = New System.Windows.Forms.l abel()

Dim resources As System.ComponentModel. ComponentResourceManager = New System.ComponentModel . Compc nentResourceManager(GetTyp

Figure A.7 Person Class

The Above screen is the implementation of the Person Module (Figure A.7)

WYL Aalaioll ps,
Ass W

1970, ,.09¢ 11 @ sl 5,6

Saanaall lons sos>] soxs A0

Saoladl e JAUS L0 aclaas

Figure A.8 Organization Person Relations

The Figure A.8 shows the main Organization information screen with relations to
persons in it.

93

ay,xil) aokuo manil
Uloc/baue Aalhisll Ul€s 1970, ,o0e 11 O+ elaisV gusb

Figure A.9 Organization Organization Relations

The above screen (Figure A.9) is the organization relations with other organizations.

Ulac/ht o Qalasall UlSe 1970, ,.o8¢ 11 [elaasVl 2,

CABME § Jeolad

_ [ransa] wots [ctamaa | o]

WTcwe) ulgas
110 385

Figure A.10 Organization Addresses Relations

Figure A.10 shows the relations between the organization and the addresses.

94

venan-an adlaadl

A8Yooo\e i Lo

Figure A.11 Organization Telephone Relations

Above screen (Figure A.11) shows the relation between the organization and related
telephones.

E kGlobal.Microsoft.VisualBasic.CompilerServices.Des igne
Partial Class OrgForm
Inherits System.Windows.Forms.Form

‘Form overrides dispose to clean up the component list.
. <System.Diagnostics.DebuggerfionUserCode()> _
Protected Overrides Sub Dispose(Byval disposing As Boolean)
Try
If disposing AndAlso components IsNot Nothing Then
| components.Dispose()
End If
Finally
| MyBase.Dispose(disposing)
End Try
End Sub

‘Required by the Windows Form Designer
Private components As System.ComponentModel.IContainer

= 'NOTE: The following procedure is required by the Windows Form Designer

| ‘It can be modified using the Windows Form Designer.

‘Do not modify it using the code editor.

<System.Diagnostics.DebuggerStepThrough()> _

Private Sub InitializeComponent()

Me.components = New System.ComponentModel.Container()

| Dim resources As System.ComponentModel.Co:
Me.ToolStripl = New System.Windows.Forms.ToolStrip()
Me.tsbSave = New System.Windows.Forms.ToolStripButton()
Me.tsbDel = New System.Windows.Forms.ToolStripSu)
Me.ToolStripSeparatorl = New System,Windows.Forms.ToolStripSeparator()
Me.tsbExit = New System.Windows.Forms.ToolStripButton()

| Me.GroupBoxl = New System.Windows.Forms.GroupBox()

Me.TextBox7 = New System.Windows.Farms.TextBox()

Me.LabellB = New System.Windows.Forms.lLabel()

ponentRe

eManager = New System.ComponentModel.ComponentResourceManager(GetTyp)

Figure A.12 Organization Class

Figure A.12 shows part of the Organizational module design.
95

http://www.tcpdf.org

o o iinghiiall jla

& DARALMANDUMAH

Aipadl Shag Loa Ll o cig B2 sy 10

Simplified O-O Re-Design Approach: Deriving Object Oriented 1Ulgasll
Design from Traditional Procedural Design

200 (0 i o2 Aol S3gaill o)| algoll

Al Khanjari, Zuhoor Abdullah Salim(Advisor) t o> Hailio

2014 1S3>l Zu, U

s o 1990

1-95 1olxaall

972147 :MD 8,

dzol> Pilw, i Sgizall £95

English :aelll

wiow>lo alw, ragodell as)all

w8 ulblull agol> rasol=l

pelell & s s sl

Uloc raJgall

Dissertations 10logleoll aclgd

c@yadesdl aduduwdl duzpinll «Olizeo,dl puouai «Oliseo ,dl dwiid :Raolgo
Olzo,dl @wiid puowaill dsle] caucloi> VI oSl Jd= oy
aycoog0ll

https://search.mandumah.com/Record/972147 ol

abgizo Jgi=l grox .angliiall > 2019 ©
3lall 01 aclbs ol Jaoz liSoy cabgazo ,unll Sgi> gao ol lale il D> olseol 2o 590ll JLO.AH wde sy aslio dslodl 01
oo s zupai Ugs (g uSIVI 3l of sVl g8lge Jio) @liws S e il of Jugmdl of dowidl gioyg Jasd wsvaseid] plassw\
Aoghioll ls of pindl Bgi> Lol

www.manharaa.c

https://search.mandumah.com/Record/972147

!

Simplified O-O Re-Design Approach:
Deriving Object Oriented Design from
Traditional Procedural Design

Ahmed Saif Mohammed Al-Shandoudi

A thesis submitted in partial fulfillment
of the requirements for the degree
Master of Science
in

Computer Science

Department of Computer science
College of Science
Sultan Qaboos University

Sultanate of Oman

2014

http://www.tcpdf.org

